A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc...A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8×12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.展开更多
Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident...Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of vi...Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of virtual containers and improves the picking efficiency. However, the interval of consecutive goods caused by dispensers on conveyor can not be eliminated by DVWA, which limits a further improvement of picking efficiency. In order to solve this problem, a compressible virtual window algorithm (CVWA) is presented. It not only inherits the merit of DVWA but also compresses the length of virtual containers without congestion of order accumulation by advancing the beginning time of order picking and reasonably coordinating the pace of order accumulation. The simulation result proves that the picking efficiency of automated sorting system is greatly improved by CVWA.展开更多
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen...Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG dat...This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.展开更多
HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acq...HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.展开更多
Currently,in multimedia and image processing technologies, implementing special kinds of image manipulation operations by dealing directly with the compressed image is a work worthy to be concerned with. Theoretical a...Currently,in multimedia and image processing technologies, implementing special kinds of image manipulation operations by dealing directly with the compressed image is a work worthy to be concerned with. Theoretical analysis and experiment haVe indicated that some kinds of image processing works can be done very well by dealing with compressed image. In Ans paper, we give some efficient image manipulation operation algorithms operating on the compressed image data. These algorithms have advantages in computing complexity, storage space retirement and image quality.展开更多
Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process o...Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.展开更多
We propose the Forward-Backward Synergistic Acceleration Pursuit (FBSAP) algorithm in this paper. The FBSAP algorithm inherits the advantages of the Forward-Backward Pursuit (FBP) algorithm, which has high success rat...We propose the Forward-Backward Synergistic Acceleration Pursuit (FBSAP) algorithm in this paper. The FBSAP algorithm inherits the advantages of the Forward-Backward Pursuit (FBP) algorithm, which has high success rate of reconstruction and does not necessitate the sparsity level as a priori condition. Moreover, it solves the problem of FBP that the atom can be selected only by the fixed step size. By mining the correlation between candidate atoms and residuals, we innovatively propose the forward acceleration strategy to adjust the forward step size adaptively and reduce the computation. Meanwhile, we accelerate the algorithm further in backward step by fusing the strategy proposed in Acceleration Forward-Backward Pursuit (AFBP) algorithm. The experimental simulation results demonstrate that FBSAP can greatly reduce the running time of the algorithm while guaranteeing the success rate in contrast to FBP and AFBP.展开更多
This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. Th...This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. The proposed scheme enhances the compression ratio of the ACW(n) algorithm by dividing the binary sequence into a number of subsequences (s), each of them satisfying the condition that the number of decimal values (d) of the n-bit length characters is equal to or less than 256. Therefore, the new scheme is referred to as ACW(n, s), where n is the adaptive character wordlength and s is the number of subsequences. The new scheme was used to compress a number of text files from standard corpora. The obtained results demonstrate that the ACW(n, s) scheme achieves higher compression ratio than many widely used compression algorithms and it achieves a competitive performance compared to state-of-the-art compression tools.展开更多
This paper studied a fast recursive predictive algorithm used for medical X-ray image compression. This algorithm consists of mathematics model building, fast recursive algorithm deducing, initial value determining, s...This paper studied a fast recursive predictive algorithm used for medical X-ray image compression. This algorithm consists of mathematics model building, fast recursive algorithm deducing, initial value determining, step-size selecting, image compression encoding and original image recovering. The experiment result indicates that this algorithm has not only a higher compression ratio to medical X-ray images compression, but also promotes image compression speed greatly.展开更多
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ...This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.展开更多
The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse...The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect.展开更多
Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse respon...Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.展开更多
文摘A memory compress algorithm for 12\|bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16×13bits with a Spurious Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8×12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0206004,2017YFA0206002,2018YFC0206002,and 2017YFA0403801)National Natural Science Foundation of China(Grant No.81430087)。
文摘Towards efficient implementation of x-ray ghost imaging(XGI),efficient data acquisition and fast image reconstruction together with high image quality are preferred.In view of radiation dose resulted from the incident x-rays,fewer measurements with sufficient signal-to-noise ratio(SNR)are always anticipated.Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously.In this paper,a method based on a modified compressive sensing algorithm with conjugate gradient descent method(CGDGI)is developed to solve the problems encountered in available XGI methods.Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI.The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金National Natural Science Foundation of China(No.50175064)
文摘Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of virtual containers and improves the picking efficiency. However, the interval of consecutive goods caused by dispensers on conveyor can not be eliminated by DVWA, which limits a further improvement of picking efficiency. In order to solve this problem, a compressible virtual window algorithm (CVWA) is presented. It not only inherits the merit of DVWA but also compresses the length of virtual containers without congestion of order accumulation by advancing the beginning time of order picking and reasonably coordinating the pace of order accumulation. The simulation result proves that the picking efficiency of automated sorting system is greatly improved by CVWA.
基金Supported by the National Natural Science Foundation of China (No. 61073079)the Fundamental Research Funds for the Central Universities (2011JBM216,2011YJS021)
文摘Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
文摘This paper reviewed the recent progress in the field of electrocardiogram (ECG) compression and compared the efficiency of some compression algorithms. By experimenting on the 500 cases of ECG signals from the ECG database of China, it obtained the numeral indexes for each algorithm. Then by using the automatic diagnostic program developed by Shanghai Zhongshan Hospital, it also got the parameters of the reconstructed signals from linear approximation distance threshold (LADT), wavelet transform (WT), differential pulse code modulation (DPCM) and discrete cosine transform (DCT) algorithm. The results show that when the index of percent of root mean square difference(PRD) is less than 2.5%, the diagnostic agreement ratio is more than 90%; the index of PRD cannot completely show the damage of significant clinical information; the performance of wavelet algorithm exceeds other methods in the same compression ratio (CR). For the statistical result of the parameters of various methods and the clinical diagnostic results, it is of certain value and originality in the field of ECG compression research.
基金The project supported by the Meg-Science Enineering Project of Chinese Acdemy of Sciences
文摘HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.
文摘Currently,in multimedia and image processing technologies, implementing special kinds of image manipulation operations by dealing directly with the compressed image is a work worthy to be concerned with. Theoretical analysis and experiment haVe indicated that some kinds of image processing works can be done very well by dealing with compressed image. In Ans paper, we give some efficient image manipulation operation algorithms operating on the compressed image data. These algorithms have advantages in computing complexity, storage space retirement and image quality.
基金supported by the Natural Science Foundation of Hainan Province, China (Grant No. 613155)
文摘Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression- encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting.
文摘We propose the Forward-Backward Synergistic Acceleration Pursuit (FBSAP) algorithm in this paper. The FBSAP algorithm inherits the advantages of the Forward-Backward Pursuit (FBP) algorithm, which has high success rate of reconstruction and does not necessitate the sparsity level as a priori condition. Moreover, it solves the problem of FBP that the atom can be selected only by the fixed step size. By mining the correlation between candidate atoms and residuals, we innovatively propose the forward acceleration strategy to adjust the forward step size adaptively and reduce the computation. Meanwhile, we accelerate the algorithm further in backward step by fusing the strategy proposed in Acceleration Forward-Backward Pursuit (AFBP) algorithm. The experimental simulation results demonstrate that FBSAP can greatly reduce the running time of the algorithm while guaranteeing the success rate in contrast to FBP and AFBP.
文摘This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. The proposed scheme enhances the compression ratio of the ACW(n) algorithm by dividing the binary sequence into a number of subsequences (s), each of them satisfying the condition that the number of decimal values (d) of the n-bit length characters is equal to or less than 256. Therefore, the new scheme is referred to as ACW(n, s), where n is the adaptive character wordlength and s is the number of subsequences. The new scheme was used to compress a number of text files from standard corpora. The obtained results demonstrate that the ACW(n, s) scheme achieves higher compression ratio than many widely used compression algorithms and it achieves a competitive performance compared to state-of-the-art compression tools.
文摘This paper studied a fast recursive predictive algorithm used for medical X-ray image compression. This algorithm consists of mathematics model building, fast recursive algorithm deducing, initial value determining, step-size selecting, image compression encoding and original image recovering. The experiment result indicates that this algorithm has not only a higher compression ratio to medical X-ray images compression, but also promotes image compression speed greatly.
基金supported by the National Natural Science Foundation of China(61172159)
文摘This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.
基金supported by the National Natural Science Foundation of China (61077079)the Specialized Research Fund for the Doctoral Program of Higher Education (20102304110013)the Program Ex-cellent Academic Leaders of Harbin (2009RFXXG034)
文摘The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect.
文摘Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.