The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
In this paper,cohyponormal weighted composition operators on the Fock space over C^(N)are characterized completely.We also consider a class of weighted composition operators on the Fock space over C^(N)which are both ...In this paper,cohyponormal weighted composition operators on the Fock space over C^(N)are characterized completely.We also consider a class of weighted composition operators on the Fock space over C^(N)which are both posinormal and coposinormal.As an application,we obtain the characterization of hyponormal,cohyponormal,posinormal and coposinormal composition operators on the Fock space over C^(N).展开更多
In this paper,we study bounded(linear and anti-linear)weighted composition operators on the symmetric Fock space over a separable Hilbert space.The unitary and self-adjoint weighted composition operators are character...In this paper,we study bounded(linear and anti-linear)weighted composition operators on the symmetric Fock space over a separable Hilbert space.The unitary and self-adjoint weighted composition operators are characterized completely.A class of normal weighted composition operators is considered.展开更多
Let p 〉 0 and μ be a normal function on [0, 1), u(r) = (1 - r2)1+n^pμ(r) for r ∈ [0, 1). In this article, the bounded or compact weighted composition operator Tφ,ψ from the μ-Bergman space AP(p) to t...Let p 〉 0 and μ be a normal function on [0, 1), u(r) = (1 - r2)1+n^pμ(r) for r ∈ [0, 1). In this article, the bounded or compact weighted composition operator Tφ,ψ from the μ-Bergman space AP(p) to the normal weight Bloch type space β (r)in the unit ball is characterized. The briefly sufficient and necessary condition that the composition operator Cφ is compact from A^p(μ) to βv, is given. At the same time, the authors give the briefly sufficient and necessary condition that Cv is compact on βμ, for a 〉 1.展开更多
Necessary and sufficient conditions are established for a composition operator C(phi)f = f o phi to be bounded or compact on the Bers-type space H-alpha(infinity) and the little Bers-type space H-alpha(infinity). The ...Necessary and sufficient conditions are established for a composition operator C(phi)f = f o phi to be bounded or compact on the Bers-type space H-alpha(infinity) and the little Bers-type space H-alpha(infinity). The boundedness and compactness of the composition operator C-phi on A(infinity)(phi) are characterized, which generalize the case of C-phi on H-alpha(infinity).展开更多
We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condit...We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the op...We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.展开更多
For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a boun...For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.展开更多
In this paper, we obtain some new necessary and sufficient conditions for the boundedness and compactness of composition operators Cφ between Bloch type spaces in the unit ball Bn.
We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
This paper studies the collective compactness of composition operator sequences between the Bergman and Hardy spaces.Some sufficient and necessary conditions involving the generalized Nevanlinna counting functions for...This paper studies the collective compactness of composition operator sequences between the Bergman and Hardy spaces.Some sufficient and necessary conditions involving the generalized Nevanlinna counting functions for composition operator sequences to be collectively compact between weighted Bergman spaces are given.展开更多
This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to ...This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.展开更多
This paper studies a class of weighted composition operators and their spectrum on the Fock space. As an application, bounded self-adjoint, a class of complex symmetric weighted composition operators on the Fock space...This paper studies a class of weighted composition operators and their spectrum on the Fock space. As an application, bounded self-adjoint, a class of complex symmetric weighted composition operators on the Fock space are characterized.展开更多
Composition operators are used to study the E(p,q) spaces. The boundedness of these operators is also considered. The criteria for these operators to be bounded are given in terms of the Carleson measure.
In the present paper, the characterization of invertible composition oper-ators on compact Riemann surfaces is obtained, which is very different from that in the case of Hardy or Bergman spaces on a disk of the comple...In the present paper, the characterization of invertible composition oper-ators on compact Riemann surfaces is obtained, which is very different from that in the case of Hardy or Bergman spaces on a disk of the complex plane C.展开更多
In this paper, we define the weighted Dirichlet space D p α(Ω) on bounded symmetric domains Ω of C n. Using η-α Carleson measure,we study the boundedness and compactmess of the composition operators between the w...In this paper, we define the weighted Dirichlet space D p α(Ω) on bounded symmetric domains Ω of C n. Using η-α Carleson measure,we study the boundedness and compactmess of the composition operators between the weighted Dirichlet spaces.展开更多
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
基金Supported by the National Natural Science Foundation of China(Grant No.12271134)Shanxi Scholarship Council of China(Grant No.2020-089)Program of Graduate Bilingual Curriculum Construction in Shanxi Normal University(Grant No.YJSSY201903).
文摘In this paper,cohyponormal weighted composition operators on the Fock space over C^(N)are characterized completely.We also consider a class of weighted composition operators on the Fock space over C^(N)which are both posinormal and coposinormal.As an application,we obtain the characterization of hyponormal,cohyponormal,posinormal and coposinormal composition operators on the Fock space over C^(N).
基金Supported by the National Natural Science Foundation of China(Grant No.11771401)Shanxi Scholarship Council of China(Grant No.2020-089)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(Grant No.20200019).
文摘In this paper,we study bounded(linear and anti-linear)weighted composition operators on the symmetric Fock space over a separable Hilbert space.The unitary and self-adjoint weighted composition operators are characterized completely.A class of normal weighted composition operators is considered.
基金supported by the National Natural Science Foundation of China(11571104)Hunan Provincial Natural Science Foundation of China(2015JJ2095)
文摘Let p 〉 0 and μ be a normal function on [0, 1), u(r) = (1 - r2)1+n^pμ(r) for r ∈ [0, 1). In this article, the bounded or compact weighted composition operator Tφ,ψ from the μ-Bergman space AP(p) to the normal weight Bloch type space β (r)in the unit ball is characterized. The briefly sufficient and necessary condition that the composition operator Cφ is compact from A^p(μ) to βv, is given. At the same time, the authors give the briefly sufficient and necessary condition that Cv is compact on βμ, for a 〉 1.
基金the National Natural Science Foundation of China(19971091)
文摘Necessary and sufficient conditions are established for a composition operator C(phi)f = f o phi to be bounded or compact on the Bers-type space H-alpha(infinity) and the little Bers-type space H-alpha(infinity). The boundedness and compactness of the composition operator C-phi on A(infinity)(phi) are characterized, which generalize the case of C-phi on H-alpha(infinity).
基金Supported by the National Natural Science Foundation of China (10971219)Shanghai Education Research and Innovation Project (10YZ185)Shanghai University Research Special Foundation for Outstanding Young Teachers (sjr09015)
文摘We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金Supported in part by 973 plan and NSF of Zhejiang Province of China(Gl999075105)
文摘We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.
文摘For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.
基金Supported in part by the National Natural Science Foundation of China(1130140411271359)the Educational Commission of Hubei Province of China(Q20121503)
文摘In this paper, we obtain some new necessary and sufficient conditions for the boundedness and compactness of composition operators Cφ between Bloch type spaces in the unit ball Bn.
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
基金This research is supported by the National Natural Science Foundation of China
文摘This paper studies the collective compactness of composition operator sequences between the Bergman and Hardy spaces.Some sufficient and necessary conditions involving the generalized Nevanlinna counting functions for composition operator sequences to be collectively compact between weighted Bergman spaces are given.
基金Supported by the National Natural Science Foundation of China (10771064)the Natural Science Foundation of Zhejiang province (Y6090036+1 种基金Y7080197,Y606197)the Foundation of Department of Education of Zhejiang Province (20070482)
文摘This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1120127411471189)
文摘This paper studies a class of weighted composition operators and their spectrum on the Fock space. As an application, bounded self-adjoint, a class of complex symmetric weighted composition operators on the Fock space are characterized.
文摘Composition operators are used to study the E(p,q) spaces. The boundedness of these operators is also considered. The criteria for these operators to be bounded are given in terms of the Carleson measure.
文摘In the present paper, the characterization of invertible composition oper-ators on compact Riemann surfaces is obtained, which is very different from that in the case of Hardy or Bergman spaces on a disk of the complex plane C.
文摘In this paper, we define the weighted Dirichlet space D p α(Ω) on bounded symmetric domains Ω of C n. Using η-α Carleson measure,we study the boundedness and compactmess of the composition operators between the weighted Dirichlet spaces.