期刊文献+
共找到874篇文章
< 1 2 44 >
每页显示 20 50 100
Ranking important nodes in complex networks by simulated annealing 被引量:3
1
作者 Yu Sun Pei-Yang Yao +2 位作者 Lu-Jun Wan Jian Shen Yun Zhong 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期42-47,共6页
In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented.First, the concept of an importance sequence(IS) to describe the relative importance of nodes in comp... In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented.First, the concept of an importance sequence(IS) to describe the relative importance of nodes in complex networks is defined. Then, a measure used to evaluate the reasonability of an IS is designed. By comparing an IS and the measure of its reasonability to a state of complex networks and the energy of the state, respectively, the method finds the ground state of complex networks by simulated annealing. In other words, the method can construct a most reasonable IS. The results of experiments on real and artificial networks show that this ranking method not only is effective but also can be applied to different kinds of complex networks. 展开更多
关键词 complex networks node importance ranking method simulated annealing
原文传递
Evolutionary dynamics analysis of complex network with fusion nodes and overlap edges 被引量:2
2
作者 YANG Yinghui LI Jianhua +2 位作者 SHEN Di NAN Mingli CUI Qiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期549-559,共11页
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi... Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc. 展开更多
关键词 complex network with fusion nodes and overlap edges(CNFNOEs) interlacing layered complex networks(ILCN) local world dynamic evolvement split saturation attraction factor
在线阅读 下载PDF
A New Method for Identifying Influential Nodes and Important Edges in Complex Networks 被引量:2
3
作者 ZHANG Wei XU Jia LI Yuanyuan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第3期267-276,共10页
The identification of the influential nodes in a network is of great significance for understanding the features of the network and controlling the complexity of networks in society and in biology. In this paper, we ... The identification of the influential nodes in a network is of great significance for understanding the features of the network and controlling the complexity of networks in society and in biology. In this paper, we propose a novel centrality measure for a node by considering the importance of edges and compare the performance of this method with existing seven topological-based ranking methods on the Susceptible-Infected-Recovered (SIR) model. The simulation results for four different types of real networks show that the proposed method is robust and exhibits excellent performance in identifying the most influential nodes when spreading starting from both single origin and multipleorigins simultaneously. 展开更多
关键词 complex networks influential nodes centrality methods
原文传递
Evidential method to identify influential nodes in complex networks 被引量:7
4
作者 Hongming Mo Cai Gao Yong Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期381-387,共7页
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr... Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method. 展开更多
关键词 Dempster-Shafer evidence theory (D-S theory) belief function complex networks influential nodes evidential centrality comprehensive measure
在线阅读 下载PDF
Detecting overlapping communities based on vital nodes in complex networks 被引量:2
5
作者 Xingyuan Wang Yu Wang +2 位作者 Xiaomeng Qin Rui Li Justine Eustace 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期252-259,共8页
Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well a... Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well as to determine the number of communities. In this paper, we proposed the detecting overlapping communities based on vital nodes algorithm(DOCBVA), an algorithm based on vital nodes and initial seeds to detect overlapping communities. First, through some screening method, we find the vital nodes and then the seed communities through the pretreatment of vital nodes. This process differs from most existing methods, and the speed is faster. Then the seeds will be extended. We also adopt a new parameter of attribution degree to extend the seeds and find the overlapping communities. Finally, the remaining nodes that have not been processed in the first two steps will be reprocessed. The number of communities is likely to change until the end of algorithm. The experimental results using some real-world network data and artificial network data are satisfactory and can prove the superiority of the DOCBVA algorithm. 展开更多
关键词 complex networks overlapping communities vital nodes seed communities
原文传递
Rapid identifying high-influence nodes in complex networks 被引量:1
6
作者 宋波 蒋国平 +1 位作者 宋玉蓉 夏玲玲 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期1-9,共9页
A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the unc... A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method(RIM)to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered(SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness,and eigenvector centrality methods. 展开更多
关键词 high-influence nodes dynamic model complex networks centrality measures
原文传递
Identifying influential nodes based on graph signal processing in complex networks 被引量:1
7
作者 赵佳 喻莉 +1 位作者 李静茹 周鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期639-648,共10页
Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homo... Identifying influential nodes in complex networks is of both theoretical and practical importance. Existing methods identify influential nodes based on their positions in the network and assume that the nodes are homogeneous. However, node heterogeneity (i.e., different attributes such as interest, energy, age, and so on ) ubiquitously exists and needs to be taken into consideration. In this paper, we conduct an investigation into node attributes and propose a graph signal pro- cessing based centrality (GSPC) method to identify influential nodes considering both the node attributes and the network topology. We first evaluate our GSPC method using two real-world datasets. The results show that our GSPC method effectively identifies influential nodes, which correspond well with the underlying ground truth. This is compatible to the previous eigenvector centrality and principal component centrality methods under circumstances where the nodes are homogeneous. In addition, spreading analysis shows that the GSPC method has a positive effect on the spreading dynamics. 展开更多
关键词 complex networks graph signal processing influential node identification
原文传递
Coarse Graining Method Based on Noded Similarity in Complex Network
8
作者 Yingying Wang Zhen Jia Lang Zeng 《Communications and Network》 2018年第3期51-64,共14页
Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex... Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks. 展开更多
关键词 complex Network Coarse GRAINING node SIMILARITY STATISTICAL PROPERTIES
在线阅读 下载PDF
RESEARCH ON KEY NODES OF WIRELESS SENSOR NETWORK BASED ON COMPLEX NETWORK THEORY
9
作者 Ma Chuang Liu Hongwei Zuo Decheng Wu Zhibo Yang Xiaozong 《Journal of Electronics(China)》 2011年第3期396-401,共6页
On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average ... On the basis of complex network theory, the issues of key nodes in Wireless Sensor Networks (WSN) are discussed. A model expression of sub-network fault in WSN is given at first; subsequently, the concepts of average path length and clustering coefficient are introduced. Based on the two concepts, a novel attribute description of key nodes related to sub-networks is proposed. Moreover, in terms of node deployment density and transmission range, the concept of single-point key nodes and generalized key nodes of WSN are defined, and their decision theorems are investigated. 展开更多
关键词 Wireless Sensor Network (WSN) Key nodes Fault model complex network theory
在线阅读 下载PDF
Mining and Ranking Important Nodes in Complex Network by K-Shell and Degree Difference 被引量:1
10
作者 Jianpei Zhang Hui Xu +1 位作者 Jing Yang Lijun Lun 《国际计算机前沿大会会议论文集》 2018年第1期28-28,共1页
在线阅读 下载PDF
Impulsive synchronization of two coupled complex networks with time-delayed dynamical nodes
11
作者 王树国 姚洪兴 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期136-141,共6页
In this paper, we investigate the impulsive synchronization between two coupled complex networks with time- delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive contr... In this paper, we investigate the impulsive synchronization between two coupled complex networks with time- delayed dynamical nodes. Based on the Lyapunov stability, the linear feedback control and the impulsive control theories, the linear feedback and the impulsive controllers are designed separately. By using the generalized Barbalat's lemma, the global asymptotic impulsive synchronization of the drive-response complex networks is derived and some corresponding sufficient conditions are also obtained. Numerical examples are presented to verify the effectiveness and the correctness of the synchronization criteria. 展开更多
关键词 complex dynamical networks impulsive synchronization time-delayed nodes general-ized Barbalat lemma
原文传递
多层网络视角下的中欧海铁运输网络级联失效脆弱性分析 被引量:1
12
作者 张玉召 康欢欢 邓雨露 《计算机工程与应用》 北大核心 2025年第5期298-308,共11页
为研究多层网络建模方法及结构特性、多层网络节点重要度计算与级联失效过程各因素对脆弱性动态变化的影响,利用多层网络理论构建双层运输网络拓扑模型并分析其拓扑特性,提出一种多层网络节点重要度计算方法,并设计考虑节点容量、节点... 为研究多层网络建模方法及结构特性、多层网络节点重要度计算与级联失效过程各因素对脆弱性动态变化的影响,利用多层网络理论构建双层运输网络拓扑模型并分析其拓扑特性,提出一种多层网络节点重要度计算方法,并设计考虑节点容量、节点状态、节点重要度的负载-容量级联失效模型,仿真分析影响网络脆弱性的因素与变化规律。研究表明,中欧海铁双层运输网络符合复杂网络的无标度特性,网络层间异配耦合连接,节点容量系数、不同类型节点及负载分配方式对网络脆弱性影响较大,并验证了多层网络节点重要度计算方法的合理性。结论显示,发生突发事件时要优先保护重要节点,设计车站时要预留一定负载冗余空间,以提升节点失效后的负载承受能力。 展开更多
关键词 复杂网络 多层网络 节点重要性 级联失效 网络脆弱性
在线阅读 下载PDF
基于复杂网络理论的公交站点便捷性评价方法
13
作者 李婷 李乐天 +2 位作者 毛新华 孙璐 魏迎涛 《长安大学学报(自然科学版)》 北大核心 2025年第3期141-151,共11页
为准确评估城市公交站点便捷性及其主要影响因素,改善当前城市公交站点服务水平,开展了城市公交站点便捷性评估方法研究。在对比度中心性指标、接近中心性指标、介数中心性指标和佩奇排名指标这4种指标计算方法的基础上,在公交网络建模... 为准确评估城市公交站点便捷性及其主要影响因素,改善当前城市公交站点服务水平,开展了城市公交站点便捷性评估方法研究。在对比度中心性指标、接近中心性指标、介数中心性指标和佩奇排名指标这4种指标计算方法的基础上,在公交网络建模时引入了有向加权复杂网络理论中的节点重要性分析方法;综合考虑公交站点、线路以及与其他交通方式接驳等多个因素,结合复杂加权网络的节点重要性评估指标,构建了以换乘连通性、换乘可达性、接驳便利性、站点可达性和可达重要性等为主要指标的城市公交站点便捷性评价指标体系及计算方法;以西安市2023年公交线路和站点系统为例,对公交站点和公交线路构成的复杂网络进行建模,利用算术加权平均值得到了公交站点便捷性得分,根据得分将公交站点便捷性划分为高、中、低3个等级,并将该得分应用于公交线路便捷性差异分析和区域便捷性差异分析。研究结果表明:西安市便捷性为高、中、低的公交站点占比分别为6.58%、82.72%、10.70%,便捷性为高、中、低的公交线路占比分别为9.27%、87.53%、3.2%;由于城市规划、空间布局和社会背景等众多因素的影响,西安市不同区域内的公共交通资源分布存在空间上的不均衡性。 展开更多
关键词 交通工程 城市公交站点 复杂网络 节点重要性 站点便捷性评价
原文传递
制造业智能化转型中AI应用的风险传播机制与控制研究——AI能力的双面效应
14
作者 谢卫红 喻娟 +2 位作者 陈淑敏 李忠顺 赵修仪 《工业技术经济》 北大核心 2025年第10期109-116,共8页
在制造业智能化转型中,人工智能(AI)技术的应用提高了效率但也带来了风险。现有研究缺乏对复杂的制造网络动态演化及AI双向调节作用的系统分析。本文整合复杂网络与元胞自动机方法,构建动态风险传导模型,量化AI能力对风险传播和恢复的... 在制造业智能化转型中,人工智能(AI)技术的应用提高了效率但也带来了风险。现有研究缺乏对复杂的制造网络动态演化及AI双向调节作用的系统分析。本文整合复杂网络与元胞自动机方法,构建动态风险传导模型,量化AI能力对风险传播和恢复的双面效应,并通过特斯拉、西门子、富士康等案例验证策略有效性。研究发现,AI能力通过增强节点交互效率加速风险传播,同时通过智能优化提升系统恢复效率,形成“传播加速-恢复增强”的动态平衡。研究还发现,运行状态特征对风险控制的影响超过了网络结构特征,AI能力可以通过优化运行状态的稳定性来降低风险。在高AI能力的条件下,采取针对性策略的风险显著低于随机策略。研究为制造业提供了平衡AI创新与风险管控的量化模型和实践路径,建议重点提升关键节点AI韧性、实施差异化网络保护,并建立跨组织风险协同治理体系。 展开更多
关键词 制造业智能化转型 人工智能 风险传播与控制 元胞自动机 复杂网络 节点交互效率 智能优化 针对性策略
在线阅读 下载PDF
基于邻域信息熵与有效距离的网络节点识别
15
作者 张正勇 苏健生 +1 位作者 姜敏勤 杨钰 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第2期387-396,共10页
为了克服现有关键节点识别技术存在的计算复杂性大、评估维度单一和应用范围有限等缺点,构造了一个适用于关键节点评估的新算法。该算法首先通过分析节点的信息熵以及其邻居节点的影响力贡献,评估节点的局部影响力,从而消除了传统仅仅... 为了克服现有关键节点识别技术存在的计算复杂性大、评估维度单一和应用范围有限等缺点,构造了一个适用于关键节点评估的新算法。该算法首先通过分析节点的信息熵以及其邻居节点的影响力贡献,评估节点的局部影响力,从而消除了传统仅仅依赖节点度量为评估标准的瑕疵。其次,该算法通过衡量节点间距离的相关性来确定节点的全局影响力,有效解决了因考虑过多路径而导致的计算量激增的问题。为了充分论证算法的实用性,借助单调性实验、传染病模型实验以及鲁棒性实验,对4个规模各异的真实网络以及6种比较算法展开分析。最终结果显示该算法在准确性、有效性和识别能力等方面均有一定改善,同时,其计算复杂度较低,可应用于稀疏的网络。 展开更多
关键词 复杂网络 关键节点 节点信息熵 全局信息 局部信息
在线阅读 下载PDF
基于增强图神经网络和对比学习的复杂网络节点分类
16
作者 徐培玲 王玉 谭艳丽 《电信科学》 北大核心 2025年第8期127-138,共12页
复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网... 复杂网络节点分类大多基于图神经网络学习节点表示而实现,图神经网络通过邻域聚合对复杂网络局部结构信息进行编码。然而,图神经网络的过平滑问题导致复杂网络节点分类性能受限。基于此,提出一种基于增强图神经网络和对比学习的复杂网络节点分类方法。该方法不仅为邻域节点引入注意力来区分各邻居节点的重要性,而且采用局部邻域重叠度和全局邻域重叠度构造边的特征,从而扩大节点表示的信息量。最后,引入对比学习对神经网络进行训练,从而利用网络全局节点分类先验信息对节点表示进行联合优化。在Cora、Citeseer、PubMed和Chameleon公开网络数据集上进行了实验,结果表明,相较于其他先进方法,所提方法的节点分类性能更好,并通过消融实验验证了所提方法的有效性。 展开更多
关键词 网络节点分类 复杂网络 图神经网络 图注意力网络 对比学习
在线阅读 下载PDF
基于引力影响模型的轨道交通网络关键节点识别研究 被引量:3
17
作者 左忠义 刘泽宇 杨广川 《交通运输系统工程与信息》 北大核心 2025年第1期102-112,共11页
有效识别轨道交通网络中的关键节点,有助于分析轨道交通网络鲁棒性,并制定轨道交通网络抗风险预案,保障轨道交通网络的正常运行。本文考虑轨道交通网络中节点之间的相互影响情况,选取连接重要度(DC)、路径重要度(BC)和可达重要度(CC)作... 有效识别轨道交通网络中的关键节点,有助于分析轨道交通网络鲁棒性,并制定轨道交通网络抗风险预案,保障轨道交通网络的正常运行。本文考虑轨道交通网络中节点之间的相互影响情况,选取连接重要度(DC)、路径重要度(BC)和可达重要度(CC)作为节点重要度的综合衡量指标;将现实轨道交通网络构造为相应拓扑网络,借助引力影响模型识别轨道交通网络关键节点,并分析不同影响因素下的网络性能差异,得出最佳引力影响半径与攻击策略;结合现实轨道交通网络,从引力角度分析轨道交通网络关键节点,并提出相关建议。结果表明:节点的重要度由目标节点与其他节点产生的引力作用组成;当引力影响模型的引力影响半径R=8,并选取动态攻击策略时,与R=7和R=9相比,最大连通子图相对大小下降率分别提高13.25%和10.39%,网络客流效率相对大小下降率分别提高5.12%和6.71%;相较于FGM(融合引力模型)、GC(万有引力中心性指标)、KSGC(基于k-shell改进的万有引力模型)和考虑集体影响力的CI模型,引力影响模型在轨道交通网络关键节点识别中有明显优势。此外,在攻击前30个节点后,北京市地铁网络最大连通子图相对大小降低91.68%,网络客流效率相对大小降低86.17%,表明引力影响模型在北京市地铁网络中具有适用性与有效性。通过引力影响模型识别轨道交通网络中关键节点,可以为分析网络鲁棒性提供新的思考角度,为决策者制定网络抗风险预案提供有效依据。 展开更多
关键词 城市交通 关键节点 引力影响模型 网络性能 复杂网络
在线阅读 下载PDF
基于复杂网络与数值模拟的暴雨-洪水-泥石流灾害链分析
18
作者 杨海波 李梦雨 +2 位作者 蔡迎春 邓宇 李军华 《人民黄河》 北大核心 2025年第7期124-130,共7页
暴雨灾害会引发山洪及泥石流等次生灾害,形成复杂的灾害链,对社会经济和自然生态系统造成重大威胁。现有研究对多灾害节点之间的交互关系及其叠加风险的探索尚显不足。为解决这一问题,结合复杂网络理论与FLO-2D数值模拟技术,构建了一种... 暴雨灾害会引发山洪及泥石流等次生灾害,形成复杂的灾害链,对社会经济和自然生态系统造成重大威胁。现有研究对多灾害节点之间的交互关系及其叠加风险的探索尚显不足。为解决这一问题,结合复杂网络理论与FLO-2D数值模拟技术,构建了一种针对暴雨-洪水-泥石流灾害链的分析框架,并以河南省栾川县柿树沟为研究区域,分析河南郑州“7·20”特大暴雨灾害背景下的灾害链动态演化特征。研究结果表明:1)数值模拟结果显示泥石流的最大流速可达6.56 m/s,最大堆积深度为7.30 m,高、中、低危险区占比分别为3.61%、17.65%、78.74%;2)排水设施损坏或堵塞、电力设施损坏、内涝积水、车辆被淹、泥石流、河水倒灌是灾害链网络的关键节点;3)河水倒灌→内涝积水、内涝积水→车辆被淹、内涝积水→电力设施损坏、河堤毁坏→河道堵塞、车辆被淹→人员伤亡是灾害链网络的关键边。从动态演化的视角识别灾害链中的关键节点和关键边,深入解析多灾害节点之间的交互机制,可为灾害风险评估、防灾减灾措施优化及应急管理提供科学依据。 展开更多
关键词 暴雨-洪水-泥石流灾害链 复杂网络 FLO-2D 关键节点 关键边
在线阅读 下载PDF
全球稀土氧化物贸易格局演变与供应风险传播研究:基于SIR模型
19
作者 廖秋敏 张佳乐 熊斌斌 《中国矿业》 北大核心 2025年第10期44-56,共13页
稀土是广泛应用于高新技术领域的重要战略资源。随着地缘政治摩擦与大国博弈日趋加剧,稀土氧化物产品的全球贸易安全受到潜在威胁,供应风险随时可能发生。贸易网络结构特征及演变趋势也深刻影响着供应风险的传导路径与传播范围。为精准... 稀土是广泛应用于高新技术领域的重要战略资源。随着地缘政治摩擦与大国博弈日趋加剧,稀土氧化物产品的全球贸易安全受到潜在威胁,供应风险随时可能发生。贸易网络结构特征及演变趋势也深刻影响着供应风险的传导路径与传播范围。为精准识别关键风险源并评估其潜在影响,选取2003—2023年稀土氧化物贸易数据,运用复杂网络理论系统分析全球贸易结构演变特征;构建关键风险节点识别框架与SIR传播模型,基于2023年数据模拟不同风险源供应风险传播状况。研究结果表明:①从贸易格局演变来看,全球稀土氧化物贸易规模和网络密度逐步提升,贸易网络呈现明显的小世界特征,贸易集中度整体上呈现“W”型的变化趋势,贸易格局由中国主导逐渐转向对少数国家(地区)的依赖,中国在稀土氧化物进口方面对美国高度依赖。②从关键风险节点识别来看,资源禀赋型风险源主要集中于中国、美国、马来西亚和荷兰等出口大国;而贸易中介型风险源则多见于在全球网络中担任转口或中介角色的国家(地区),如荷兰、日本、印度和德国。③从网络供应风险传播来看,中美两国的风险传播规模最大,且美国的传播轮次最多。其中,只有美国的供应短缺能引发中国的稀土氧化物供应危机。④恢复能力的提升能够有效减缓风险的传播。研究有助于揭示稀土贸易中的潜在风险因素及其影响范围,为构建更加安全、稳定的全球稀土供应体系提供理论支撑。 展开更多
关键词 稀土氧化物 复杂网络 贸易格局 风险节点识别 风险传播 SIR模型
在线阅读 下载PDF
基于深度学习的多样化复杂网络影响力节点识别 被引量:1
20
作者 马玉磊 郭莎莎 《电信科学》 北大核心 2025年第6期154-165,共12页
为提高多样化复杂网络中影响力节点识别的准确性和鲁棒性,提出一种基于深度学习的多样化复杂网络影响力节点识别方法。首先,采用多个中心性指标从不同方面评估节点在网络拓扑结构中的重要性,通过可学习权重向量自适应地决定不同复杂网... 为提高多样化复杂网络中影响力节点识别的准确性和鲁棒性,提出一种基于深度学习的多样化复杂网络影响力节点识别方法。首先,采用多个中心性指标从不同方面评估节点在网络拓扑结构中的重要性,通过可学习权重向量自适应地决定不同复杂网络中各指标的权重;接着,提出一种支持不同特征维度的Transformer框架;最后,利用Transformer模型对不同距离的邻居信息进行分级聚合,以提取邻域的上下文信息。在多种复杂网络数据集上完成了验证实验,结果表明,所提方法在不同规模、不同类型的复杂网络上均取得了较好的影响力节点识别性能,有效提高了影响力节点识别的准确性和鲁棒性。 展开更多
关键词 复杂网络 深度学习 自注意力机制 中心性度量 影响力节点
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部