期刊文献+
共找到7,495篇文章
< 1 2 250 >
每页显示 20 50 100
Exploring crash induction strategies in within-visual-range air combat based on distributional reinforcement learning
1
作者 Zetian HU Xuefeng LIANG +2 位作者 Jun ZHANG Xiaochuan YOU Chengcheng MA 《Chinese Journal of Aeronautics》 2025年第9期350-364,共15页
Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventio... Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications. 展开更多
关键词 Unmanned combat aerial vehicle Decision-making Distributional reinforcement learning Within-visual-range air combat Crash induction strategy
原文传递
A sample selection mechanism for multi-UCAV air combat policy training using multi-agent reinforcement learning
2
作者 Zihui YAN Xiaolong LIANG +3 位作者 Yueqi HOU Aiwu YANG Jiaqiang ZHANG Ning WANG 《Chinese Journal of Aeronautics》 2025年第6期501-516,共16页
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes... Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms. 展开更多
关键词 Unmanned combat aerial vehicle Air combat Sample selection Multi-agent reinforcement learning Policyproximal optimization
原文传递
Disintegration of heterogeneous combat network based on double deep Q-learning
3
作者 CHEN Wenhao CHEN Gang +1 位作者 LI Jichao JIANG Jiang 《Journal of Systems Engineering and Electronics》 2025年第5期1235-1246,共12页
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),... The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods. 展开更多
关键词 heterogeneous combat network(HCN) combat system of systems(CSoS) network disintegration reinforcement learning
在线阅读 下载PDF
Decision-making and confrontation in close-range air combat based on reinforcement learning
4
作者 Mengchao YANG Shengzhe SHAN Weiwei ZHANG 《Chinese Journal of Aeronautics》 2025年第9期401-420,共20页
The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in th... The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems. 展开更多
关键词 Air combat Decision making Flight simulation Reinforcement learning Self-play
原文传递
Evolution and Characteristics of Traditional Wushu as a Combat Art
5
作者 Huang Xiaohua 《Contemporary Social Sciences》 2025年第5期17-30,共14页
During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art n... During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art not only helps define its cultural essence but also carries important implications for its long-term development.It is an objective fact that combat represents the practical manifestation of traditional Wushu in history.Combat reflects similarities among traditional Wushu forms that emerged throughout history.Combat reflects the historical law governing the evolution of traditional Wushu and represents an abstraction of repetitive phenomena in traditional Wushu.A correct understanding of this objectivity,these similarities,and this repeatability is conducive to promoting and carrying forward traditional Wushu,thereby facilitating an objective analysis of differences among different traditional Wushu forms and the discovery of their evolution paradigm.In the contemporary context,it is essential for traditional Wushu to emphasize its distinctive cultural roots,thereby facilitating creative transformation and innovative development. 展开更多
关键词 traditional Wushu combat evolutionary characteristics cultural identity
在线阅读 下载PDF
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
6
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Integrated threat assessment method of beyond-visual-range air combat
7
作者 WANG Xingyu YANG Zhen +3 位作者 CHAI Shiyuan HE Yupeng HUO Weiyu ZHOU Deyun 《Journal of Systems Engineering and Electronics》 2025年第1期176-193,共18页
Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its ... Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its failure to consider the intention and event of the target,resulting in inaccurate assessment results.In view of this,an integrated threat assessment method is proposed to address the existing problems,such as overly subjective determination of index weight and imbalance of situation.The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention,event,situation,and capability.On this basis,a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively.Then,variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective.The performance of the model and algorithm is evaluated through multiple simulation experiments.The assessment results demonstrate the accuracy of the proposed method in BVR air combat,indicating its potential practical significance in real air combat scenarios. 展开更多
关键词 beyond-visual-range(BVR) air combat threat assessment game theory variable weight theory
在线阅读 下载PDF
A novel trajectory prediction method for UAV air combat based on QCNet-3D
8
作者 Jiahui Zhang Zhijun Meng +2 位作者 Siyuan Liu Jiachi Ji Jiazheng He 《Defence Technology(防务技术)》 2025年第12期151-165,共15页
Unmanned Aerial Vehicle(UAV) trajectory prediction is an important research topic in the field of UAV air combat. In order to address the problem of single-feature extraction scale and scene adaptability in UAV air co... Unmanned Aerial Vehicle(UAV) trajectory prediction is an important research topic in the field of UAV air combat. In order to address the problem of single-feature extraction scale and scene adaptability in UAV air combat trajectory prediction algorithms, this paper proposes an innovative UAV trajectory prediction method QCNet-3D, which can predict the future trajectory of the target UAV and provide the corresponding possibility. Firstly, the UAV trajectory prediction is modeled based on the mixture of Laplace distributions, and the UAV's kinetic equations are employed to construct the UAV trajectory prediction dataset(UAVTP dataset), ensuring high reliability. Secondly, two improvement methods are proposed on the basis of QCNet: multi-scale Fourier mapping and three-dimensional adaptation. The ablation study shows that the improvement methods have reduced the minimum average displacement error, minimum final displacement error, and missing rate by 55.4%, 54.3%, and 68.1% respectively. Finally, QCNet-3D is proposed based on the two improvement methods, and the simulation experiment confirm the proposed algorithm's capability to predict both simple and complex UAV maneuvers, offering the possibility for each predicted trajectory under various prediction future steps and output modes. 展开更多
关键词 Unmanned aerial vehicle(UAV) UAV air combat Trajectory prediction Deep learning Fourier mapping
在线阅读 下载PDF
Autonomous maneuver decision-making for a UCAV in short-range aerial combat based on an MS-DDQN algorithm 被引量:9
9
作者 Yong-feng Li Jing-ping Shi +2 位作者 Wei Jiang Wei-guo Zhang Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1697-1714,共18页
To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method ba... To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning(DRL) algorithm: the multistep double deep Q-network(MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making. 展开更多
关键词 Unmanned combat aerial vehicle Aerial combat decision Multi-step double deep Q-network Six-degree-of-freedom Aerial combat maneuver library
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
10
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
ASSESSMENT OF AIRCRAFT COMBAT SURVIVABILITY ENHANCED BY COMBINED RADAR STEALTH AND ONBOARD ELECTRONIC ATTACK 被引量:1
11
作者 黄俊 武哲 +1 位作者 向锦武 朱荣昌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期150-156,共7页
The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susce... The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable. 展开更多
关键词 combat survivability radar cross section electronic attack detection guidance error
在线阅读 下载PDF
OPTIMIZATION FOR COMBAT CONFIGURATION OF AIR DEFENSE WEAPON SYSTEMS 被引量:3
12
作者 韩松臣 王兴贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期48-52,共5页
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe... At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field. 展开更多
关键词 air defense missile effectiveness analysis combat configuration simulated annealing algorithm stochastic service system
在线阅读 下载PDF
Situation assessment for air combat based on novel semi-supervised naive Bayes 被引量:19
13
作者 XU Ximeng YANG Rennong FU Ying 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期768-779,共12页
A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrum... A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier. 展开更多
关键词 air combat situation assessment air combat maneu-vering instrument SEMI-SUPERVISED naive Bayes.
在线阅读 下载PDF
UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning 被引量:25
14
作者 ZHANG Jiandong YANG Qiming +2 位作者 SHI Guoqing LU Yi WU Yong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1421-1438,共18页
In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried ou... In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out,but these studies are often aimed at individual decision-making in 1 v1 scenarios which rarely happen in actual air combat.Based on the research of the 1 v1 autonomous air combat maneuver decision,this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning.Firstly,a bidirectional recurrent neural network(BRNN)is used to achieve communication between UAV individuals,and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established.Secondly,through combining with target allocation and air combat situation assessment,the tactical goal of the formation is merged with the reinforcement learning goal of every UAV,and a cooperative tactical maneuver policy is generated.The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning,the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation. 展开更多
关键词 DECISION-MAKING air combat maneuver cooperative air combat reinforcement learning recurrent neural network
在线阅读 下载PDF
A Multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat 被引量:12
15
作者 Wei-hua Li Jing-ping Shi +2 位作者 Yun-yan Wu Yue-ping Wang Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1006-1022,共17页
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur... Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat. 展开更多
关键词 Unmanned combat aerial vehicle Cooperative occupation Beyond-visual-range air combat Weapon engagement zone Discrete particle swarm optimization Formation switching
在线阅读 下载PDF
Formation and adjustment of manned/unmanned combat aerial vehicle cooperative engagement system 被引量:18
16
作者 ZHONG Yun YAO Peiyang +1 位作者 ZHANG Jieyong WAN Lujun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期756-767,共12页
Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the n... Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms. 展开更多
关键词 manned combat aerial vehicle (MCAV) unmannedcombat aerial vehicle (UCAV) cooperative engagement system quantum artificial bee colony (QABC) greedy strategy (GS) two-stage greedy strategy (TSGS)
在线阅读 下载PDF
Cooperative decision-making algorithm with efficient convergence for UCAV formation in beyond-visual-range air combat based on multi-agent reinforcement learning 被引量:2
17
作者 Yaoming ZHOU Fan YANG +2 位作者 Chaoyue ZHANG Shida LI Yongchao WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期311-328,共18页
Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance ... Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms. 展开更多
关键词 Unmanned combat aerial vehicle(UCAV)formation DECISION-MAKING Beyond-visual-range(BVR)air combat Advantage highlight Multi-agent reinforcement learning(MARL)
原文传递
“战斗力”能译成“combativeness”吗?
18
作者 侯松山 王全利 李成兵 《海外英语》 2016年第2期88-89,共2页
新华网英文版在一篇报道中把军事术语"战斗力"译成了"combativeness"。通过分析十四部英汉词典中"combativeness"的释义、八部汉英词典给出的"战斗力"的译法以及基于问卷调查的结果,作者指出... 新华网英文版在一篇报道中把军事术语"战斗力"译成了"combativeness"。通过分析十四部英汉词典中"combativeness"的释义、八部汉英词典给出的"战斗力"的译法以及基于问卷调查的结果,作者指出了新华网这一译法的错误,补充了汉英词典未收录的"战斗力"的两种译法,并强调加强外宣翻译中政治意识的重要性。 展开更多
关键词 战斗力 combativeness 英汉和汉英词典 问卷调查 政治意识
在线阅读 下载PDF
Entry-Level Forward Surgical Team Training Is Associated with Increased Confidence of Primary Combat Surgeons
19
作者 Junnan Wang Jiating Hu +4 位作者 Wang Xi Pengchao Cheng Pei Wang Zhinong Wang Jian Xiao 《Surgical Science》 2023年第5期377-387,共11页
Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to differen... Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons. 展开更多
关键词 Forward Surgical Team Training Primary combat Surgeons combat Medical Skills Increased Confidence
暂未订购
Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization 被引量:69
20
作者 HUANG Changqiang DONG Kangsheng +2 位作者 HUANG Hanqiao TANG Shangqin ZHANG Zhuoran 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期86-97,共12页
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr... To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method. 展开更多
关键词 autonomous air combat maneuver decision Bayesian inference moving horizon optimization situation assessment fuzzy logic
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部