期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
1
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
Fast CU Partition for VVC Using Texture Complexity Classification Convolutional Neural Network
2
作者 Yue Zhang Pengyu Liu +3 位作者 Xiaowei Jia Shanji Chen Tianyu Liu Chang Liu 《Computers, Materials & Continua》 SCIE EI 2022年第11期3545-3556,共12页
Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure i... Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2. 展开更多
关键词 Versatile video coding(VVC) coding unit partition convolutional neural network(CNN)
在线阅读 下载PDF
Spatial Models in Thinking and Communication
3
作者 Leonid Tchertov 《Journal of Philosophy Study》 2023年第4期157-172,共16页
Spatial models joint external and internal aspects of human activity,mental schemas of thinking,and spatial structures of things.These models represent objects of knowledge,valuation,and transformation due to similari... Spatial models joint external and internal aspects of human activity,mental schemas of thinking,and spatial structures of things.These models represent objects of knowledge,valuation,and transformation due to similarity with them in various relations,and they participate in inter-subject communication using schemata common for many people.The spatial models can reproduce a modelled object or be productive regarding it.These models are created in cognitive modus of comprehension as images of objects known at various mental levels;in projective modus,they appear as projects of object’s transformation and planes of subject’s actions;in communicative modus,they are interpreted as spatial texts expressing certain senses.All of them interact in spatial thinking,which deals with the relationship of parts and the whole,unlike logical thinking operating with genus-species relations.Both practical and theoretical thinking use common spatial schemas as means of internal modelling,which are elaborated in collective and individual experience.Due to their simplicity and unification,these schemas can serve also as units of spatial codes mediating the objects representation and inter-subject communication through spatial texts created in the semiotized space. 展开更多
关键词 cognitive PROJECTIVE and communicative modes spatial schemas units of codes and texts
在线阅读 下载PDF
面向VVC帧内编码的快速CU划分和角度模式决策 被引量:7
4
作者 卢嘉彬 彭宗举 +3 位作者 束争杰 陈芬 叶庆卫 袁卓文 《光电子.激光》 CAS CSCD 北大核心 2021年第11期1171-1179,共9页
多功能视频编码(versatile video coding,VVC)是最新的视频编码标准,与高效视频编码(high efficiency video coding,HEVC)相比进一步提高了压缩效率,但由于引入了包括二叉树和三叉树在内的多类树结构,同时帧内角度模式从35种增加到67种... 多功能视频编码(versatile video coding,VVC)是最新的视频编码标准,与高效视频编码(high efficiency video coding,HEVC)相比进一步提高了压缩效率,但由于引入了包括二叉树和三叉树在内的多类树结构,同时帧内角度模式从35种增加到67种,导致编码复杂度剧增。为了降低计算复杂度,本文提出了一种基于快速编码单元(coding unit,CU)划分和角度模式决策的VVC帧内编码算法。首先根据自适应标准差阈值对CU纹理复杂度进行分类,初步缩减划分模式列表;然后采用Sobel梯度算子确定纹理方向,跳过非最优划分模式;最后根据统计结果筛选淘汰掉概率小于2%的角度模式。实验结果表明,与VTM-2.1相比,该算法能节省51.05%的编码时间,BDBR(Bjontegarrd delta bit rate)仅上升1.98%。 展开更多
关键词 多功能视频编码 快速算法 编码单元(coding unit CU)划分 帧内角度模式 纹理特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部