The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic syste...The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation.展开更多
Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers ...Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low r...Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low reaction rate,complex mechanism and low selectivity.Currently,except for a few examples,copper-based catalysts are the only option capable of achieving efficient generation of C^(2+)products.However,the continuous dynamic reconstruction of the catalyst causes great difficulty in understanding the structure-performance relationship of CO_(2)RR.In this review,we first discuss the mechanism of C^(2+)product generation.The structural factors promoting C^(2+)product generation are outlined,and the dynamic evolution of these structural factors is discussed.Furthermore,the effects of electrolyte and electrolysis conditions are reviewed in a vision of dynamic surface.Finally,further exploration of the reconstruction mechanism of Cu-based catalysts and the application of emerging robotic AI chemists are discussed.展开更多
Three-dimensional(3D)covalent organic frameworks(COFs)have attracted extensive attention as photocatalysts for CO_(2)reduction reactions.Introducing metal atoms is essential for enhancing activity,but previous metal s...Three-dimensional(3D)covalent organic frameworks(COFs)have attracted extensive attention as photocatalysts for CO_(2)reduction reactions.Introducing metal atoms is essential for enhancing activity,but previous metal sites in 3D COFs predominantly exhibit symmetrical coordination,making them unsuitable for CO_(2)activation.Here,we design a 3D COF with 2,2'-pyridine linked around tetra-(4-anilyl)methane(TCM-Bpy-COF),where Co^(2+)is asymmetrically coordinated by bipyridine and acetates(TCMBpy-COF-CoAc).The TCM-Bpy-COF-CoAc exhibits outstanding photocatalytic CO_(2)reduction performance under weak visible light,achieving a CO evolution rate of 26,650μmol g^(-1)h^(-1)under 5 W of lightemitting-diode(LED)lamp and high apparent quantum efficiency.The performance far exceeds that of symmetrically coordinated bipyridine-Co-bipyridine TCM-Bpy-COF and surpasses most reported COF-based photocatalysts.In-situ spectral characterizations and theoretical calculations show that asymmetric N,O-coordination around the Co^(2+)center polarizes electron density and lowers reaction energy barriers of^(*)COOH intermediates,enhancing the conversion of CO_(2)to CO.This work inspires the design of 3D COF-based photocatalysts with highly catalytic efficiency.展开更多
Single-atom catalysts(SACs)offer a promising approach for maximizing noble metals utilization in catalytic processes.However,their performance in CO_(2)hydrogenation is often constrained by the nature of metal-support...Single-atom catalysts(SACs)offer a promising approach for maximizing noble metals utilization in catalytic processes.However,their performance in CO_(2)hydrogenation is often constrained by the nature of metal-support interactions.In this study,we synthesized TiO_(2)supported Pt SACs(Pt1/TiO_(2)),with Pt single atoms dispersed on rutile(Pt1/R)and anatase(Pt1/A)phases of TiO_(2)for the reverse water-gas shift(RWGS)reaction.While both catalysts maintained 100%CO selectivity over time,Pt1/A achieved a CO_(2)conversion of 7.5%,significantly outperforming Pt1/R(3.6%).In situ diffuse reflectance infrared Fourier-transform spectroscopy and X-ray photoelectron spectroscopy revealed distinct reaction pathways:the COOH pathway was dominant on Pt1/A,whereas the–OH+HCO pathway was more competitive on Pt1/R.Analysis of electron metal-support interactions and energy barrier calculations indicated that Pt1/A better stabilized metallic Pt species and facilitates more favorable reaction pathways with lower energy barriers.These findings provide valuable insights for the design of more efficient SAC systems in CO_(2)hydrogenation processes.展开更多
Dry reforming of methane(DRM)converts CH4 and CO_(2) to syngas.Photothermal DRM,which integrates temperature and light,is a sustainable method for storing solar energy in molecules.However,challenges such as limited l...Dry reforming of methane(DRM)converts CH4 and CO_(2) to syngas.Photothermal DRM,which integrates temperature and light,is a sustainable method for storing solar energy in molecules.However,challenges such as limited light absorption,low photocarrier separation efficiency,Ni sintering,and carbon deposition hinder DRM stability.Herein,we regulated Ni contents in(Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalysts to enhance the optical characteristics while addressing Ni sintering and carbon deposition issues.The(3Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst had insufficient Ni content,while the(9Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst showed excessive carbon deposition,leading to lower stability compared to the(6Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst,which achieved CH4 and CO_(2) rates to 231.0 μmol gcat^(-1)s^(-1) and 294.3 μmol gcat^(-1)s^(-1) ,respectively,at 973 K,with only 0.2 wt.%carbon deposition and no Ni sintering.This work adjusted Ni contents in(Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalysts to enhance DRM performance,which has implications for improving other reactions.展开更多
The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development ...The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
基金the National Natural Science Foundation of China(No.22108171)the Shanghai Key Laboratory of Hydrogen Science&Center of Hydrogen Science,Shanghai Jiao Tong University,China.
文摘The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation.
基金supported by the National Natural Science Foundation of China(U23A20573,U23A20140)the Hebei Natural Science Foundation(B202420809,B2024208088)+2 种基金S&T Program of Hebei(242Q4301Z,22373709D)Project of Basic Research at Universities in Shijiazhuang(241790977A)Huang jin tai plan project of Hebei provincial department of education(HJZD202512)。
文摘Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future.
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low reaction rate,complex mechanism and low selectivity.Currently,except for a few examples,copper-based catalysts are the only option capable of achieving efficient generation of C^(2+)products.However,the continuous dynamic reconstruction of the catalyst causes great difficulty in understanding the structure-performance relationship of CO_(2)RR.In this review,we first discuss the mechanism of C^(2+)product generation.The structural factors promoting C^(2+)product generation are outlined,and the dynamic evolution of these structural factors is discussed.Furthermore,the effects of electrolyte and electrolysis conditions are reviewed in a vision of dynamic surface.Finally,further exploration of the reconstruction mechanism of Cu-based catalysts and the application of emerging robotic AI chemists are discussed.
基金financial support from the National Natural Science Foundation of China(No.22072183)the Natural Science Foundation of Hunan Province,China(No.2022JJ30690)supported in part by the High Performance Computing Center of Central South University。
文摘Three-dimensional(3D)covalent organic frameworks(COFs)have attracted extensive attention as photocatalysts for CO_(2)reduction reactions.Introducing metal atoms is essential for enhancing activity,but previous metal sites in 3D COFs predominantly exhibit symmetrical coordination,making them unsuitable for CO_(2)activation.Here,we design a 3D COF with 2,2'-pyridine linked around tetra-(4-anilyl)methane(TCM-Bpy-COF),where Co^(2+)is asymmetrically coordinated by bipyridine and acetates(TCMBpy-COF-CoAc).The TCM-Bpy-COF-CoAc exhibits outstanding photocatalytic CO_(2)reduction performance under weak visible light,achieving a CO evolution rate of 26,650μmol g^(-1)h^(-1)under 5 W of lightemitting-diode(LED)lamp and high apparent quantum efficiency.The performance far exceeds that of symmetrically coordinated bipyridine-Co-bipyridine TCM-Bpy-COF and surpasses most reported COF-based photocatalysts.In-situ spectral characterizations and theoretical calculations show that asymmetric N,O-coordination around the Co^(2+)center polarizes electron density and lowers reaction energy barriers of^(*)COOH intermediates,enhancing the conversion of CO_(2)to CO.This work inspires the design of 3D COF-based photocatalysts with highly catalytic efficiency.
文摘Single-atom catalysts(SACs)offer a promising approach for maximizing noble metals utilization in catalytic processes.However,their performance in CO_(2)hydrogenation is often constrained by the nature of metal-support interactions.In this study,we synthesized TiO_(2)supported Pt SACs(Pt1/TiO_(2)),with Pt single atoms dispersed on rutile(Pt1/R)and anatase(Pt1/A)phases of TiO_(2)for the reverse water-gas shift(RWGS)reaction.While both catalysts maintained 100%CO selectivity over time,Pt1/A achieved a CO_(2)conversion of 7.5%,significantly outperforming Pt1/R(3.6%).In situ diffuse reflectance infrared Fourier-transform spectroscopy and X-ray photoelectron spectroscopy revealed distinct reaction pathways:the COOH pathway was dominant on Pt1/A,whereas the–OH+HCO pathway was more competitive on Pt1/R.Analysis of electron metal-support interactions and energy barrier calculations indicated that Pt1/A better stabilized metallic Pt species and facilitates more favorable reaction pathways with lower energy barriers.These findings provide valuable insights for the design of more efficient SAC systems in CO_(2)hydrogenation processes.
基金support from the National Natural Science Foundation of China(22078134)State Key Laboratory of Clean and Efficient Coal Utilization of Taiyuan University of Technology(SKL2022006)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0162)are greatly appreciated for the work.
文摘Dry reforming of methane(DRM)converts CH4 and CO_(2) to syngas.Photothermal DRM,which integrates temperature and light,is a sustainable method for storing solar energy in molecules.However,challenges such as limited light absorption,low photocarrier separation efficiency,Ni sintering,and carbon deposition hinder DRM stability.Herein,we regulated Ni contents in(Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalysts to enhance the optical characteristics while addressing Ni sintering and carbon deposition issues.The(3Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst had insufficient Ni content,while the(9Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst showed excessive carbon deposition,leading to lower stability compared to the(6Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalyst,which achieved CH4 and CO_(2) rates to 231.0 μmol gcat^(-1)s^(-1) and 294.3 μmol gcat^(-1)s^(-1) ,respectively,at 973 K,with only 0.2 wt.%carbon deposition and no Ni sintering.This work adjusted Ni contents in(Ni/Ce_(0.8)Zr_(0.2)O_(2))@SiO_(2) catalysts to enhance DRM performance,which has implications for improving other reactions.
基金financially supported by the National Natural Science Foundation of China(22205205)the Science Foundation of Zhejiang Sci-Tech University(ZSTU)under Grant No.21062337-Y。
文摘The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.