期刊文献+
共找到282,757篇文章
< 1 2 250 >
每页显示 20 50 100
一种改进的ZigBee网络Cluster-Tree路由算法 被引量:15
1
作者 李刚 陈俊杰 葛文涛 《测控技术》 CSCD 北大核心 2009年第9期52-55,共4页
针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法... 针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法的基本思想:如果选择邻居节点的路由开销与原算法相比更小,则会选择邻居节点作为下一跳。仿真结果表明,该算法可以减少约30%的路由开销。 展开更多
关键词 ZIGBEE网络 Cluster—Tree算法 邻居表 路由开销
在线阅读 下载PDF
ZigBee传感网络Cluster-Tree改进路由算法研究 被引量:22
2
作者 贺玲玲 《传感技术学报》 CAS CSCD 北大核心 2010年第9期1303-1307,共5页
ZigBee技术的无线传感器网络是基于分布式地址分配的一种支持拓扑变化、节点移动的新型无线传感网络,拥有强大的自组网能力。针对ZigBee网络的Cluster-Tree算法对簇首能量要求高及节点间非最佳路由的问题,结合节点能量分析提出新的簇首... ZigBee技术的无线传感器网络是基于分布式地址分配的一种支持拓扑变化、节点移动的新型无线传感网络,拥有强大的自组网能力。针对ZigBee网络的Cluster-Tree算法对簇首能量要求高及节点间非最佳路由的问题,结合节点能量分析提出新的簇首产生办法,并结合AODVjr算法的思路来寻求节点间的最佳路由。仿真结果表明,改进的算法能够有效地提高数据发送成功率,降低网络中的死亡节点数,减小端到端的报文传输时延,提高网络的使用价值。 展开更多
关键词 ZIGBEE网络 cluster-tree 路由算法 节点 NS2
在线阅读 下载PDF
ZigBee中改进的Cluster-Tree路由算法 被引量:10
3
作者 谢川 《计算机工程》 CAS CSCD 北大核心 2011年第7期115-117,共3页
针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法... 针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法能有效提高数据发送成功率,减少源节点与目标节点间的跳数,降低端到端的报文传输时延,提高网络的使用价值。 展开更多
关键词 ZIGBEE网络 路由算法 cluster-tree算法 AODVjr算法 邻居表
在线阅读 下载PDF
ZigBee中Cluster-Tree路由算法改进研究 被引量:8
4
作者 邹国霞 李燕 《制造业自动化》 北大核心 2011年第13期110-112,152,共4页
针对ZigBee网络中Cluster-Tree只按父子关系选择路由可能会带来额外路由开销,高层节点可能会因为业务量过大而过早耗尽电池能量形成死点,造成网络分割等问题。本文研究出一种改进的Cluster-Tree路由算法。改进算法中通过引入邻居表,当... 针对ZigBee网络中Cluster-Tree只按父子关系选择路由可能会带来额外路由开销,高层节点可能会因为业务量过大而过早耗尽电池能量形成死点,造成网络分割等问题。本文研究出一种改进的Cluster-Tree路由算法。改进算法中通过引入邻居表,当目的节点为发送节点的邻居节点时,则直接发送给目的节点;当目的节点为邻居节点的子节点时,则下一跳为邻居节点;否则按照Cluster-Tree算法选择下一跳的节点。利用OMNET++4.1仿真结果表明,改进的Cluster-Tree路由算法能有效的减少路由开销,同时节约了网络的整体能量消耗,提高了网络的传输效率,延长了网络的存活时间。 展开更多
关键词 ZIGBEE 邻居表 cluster-tree路由算法
在线阅读 下载PDF
基于ZigBee无线网络的Cluster-Tree路由算法研究 被引量:6
5
作者 赵博 吴静 《电子技术应用》 北大核心 2016年第4期116-119,123,共5页
针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度... 针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度的节点,除了按照原等级树算法路由之外,结合引入的邻居列表信息,寻找节点不与原路径相交的路径同时进行信息传输,从而提高网络带宽利用率,达到提升网络的吞吐量的目的。仿真实验主要从网络吞吐量、端到端数据传输延时等方面入手进行对比。结果表明,改进算法能够有效地提高网络吞吐量,并降低了传输数据的延时。 展开更多
关键词 ZIGBEE网络 cluster-tree算法 Z-DMHCTR算法 邻居列表
在线阅读 下载PDF
ZigBee网络Cluster-Tree优化路由算法研究 被引量:5
6
作者 曹越 胡方明 党妮 《单片机与嵌入式系统应用》 2012年第10期4-7,共4页
通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优... 通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优化算法能够有效地减小路由跳数,缩短传输时延,减少网络中死亡节点的数量,提高数据传送的成功率。 展开更多
关键词 ZigBee 路由算法 Cluster—Tree+AODVjr 邻居表 分组
在线阅读 下载PDF
基于ZigBee网络的Cluster-Tree能量优化算法
7
作者 李玉花 田志刚 《山西科技》 2014年第6期106-108,共3页
在ZigBee网络的Cluster-Tree算法中,簇首节点容易过早耗尽自身能量,减少网络的整体寿命。针对此问题,给出了更改簇首节点的方法,避免剩余能量低的簇首节点转发大数据,减少节点到协调器的跳数,提高网络的应用价值。
关键词 ZIGBEE网络 cluster-tree算法 簇首节点 能量优化 剩余能量 邻居列表
在线阅读 下载PDF
A timeslot assignment scheme for cluster-tree based wireless sensor network 被引量:1
8
作者 张赫男 Feng Dongqin 《High Technology Letters》 EI CAS 2010年第4期395-400,共6页
Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concer... Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concern frames only without simultaneous transmission in a single slot. In this paper, we present a timeslot assignment scheme for cluster-tree-based TDMA WSN, co:'ering three frequently used working modes in practical applications. The shortest frame formed can guarantee real-time conununication and is also facilitated for message and slot integration, since timeslots allocated to a single node are continuous. During allocation processes, the algorithms are distributed and light-weighted. The experiment resulted from a WSN prototype system shows that our scheme can achieve a good reliability. 展开更多
关键词 cluster-tree time division multiple access (TDMA) timeslot assignment wireless sensor network (WSN)
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm 被引量:1
17
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis Deep learning algorithm Rapid pathologic grading
暂未订购
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部