To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realiz...To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realize large-scale QFT using an arbitrary-scale quantum register.By developing a feasible method to realize the control quantum gate Rk,we experimentally realize the 2-bit semiclassical QFT over Z_(2-3)on IBM's quantum cloud computer,which shows the feasibility of the method.Then,we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT,which is mainly due to fewer two-qubit gates in the semiclassical QFT.Furthermore,based on the proposed method,N=15 is successfully factorized by implementing Shor's algorithm.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
Our primary research hypothesis stands on a simple idea:The evolution of top-rated publications on a particular theme depends heavily on the progress and maturity of related topics.And this even when there are no clea...Our primary research hypothesis stands on a simple idea:The evolution of top-rated publications on a particular theme depends heavily on the progress and maturity of related topics.And this even when there are no clear relations or some concepts appear to cease to exist and leave place for newer ones starting many years ago.We implemented our model based on Computer Science Ontology(CSO)and analyzed 44 years of publications.Then we derived the most important concepts related to Cloud Computing(CC)from the scientific collection offered by Clarivate Analytics.Our methodology includes data extraction using advanced web crawling techniques,data preparation,statistical data analysis,and graphical representations.We obtained related concepts after aggregating the scores using the Jaccard coefficient and CSO Ontology.Our article reveals the contribution of Cloud Computing topics in research papers in leading scientific journals and the relationships between the field of Cloud Computing and the interdependent subdivisions identified in the broader framework of Computer Science.展开更多
A dynamic clustering method based on multispectral satellite imagery to identify the different features is described. The channel combinations selected are for the different purposes in classification. Several cases a...A dynamic clustering method based on multispectral satellite imagery to identify the different features is described. The channel combinations selected are for the different purposes in classification. Several cases are presented using the polar-orbiting satellite imageries.展开更多
A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a ...A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 km, 8.3 and 11 km, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time, are simulated. The model results at the satellite receiving time are compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material are similar to that of the cloud track. The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, vidth, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L-1are simulated in order to understand the variations of influencing range.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
In recent years,the use of mobile devices such as smart phones,tablet PCs,etc.is rapidly increasing.In case of these mobile devices,the storage space is limited due to their characteristics.To make up for the limited ...In recent years,the use of mobile devices such as smart phones,tablet PCs,etc.is rapidly increasing.In case of these mobile devices,the storage space is limited due to their characteristics.To make up for the limited space of storage in mobile devices,several methods are being researched.Of these,cloud storage service(CSS),one of cloud computing services,is an efficient solution to compensate such limited storage space.CSS is a service of storing files to the storage and thus getting access to stored files through networks(Internet)at anytime,anywhere.As for the existing CSS,users store their personally important files in the cloud storage,not in their own computers.It may cause security problems such as the leaking of information from private files or the damaging to the information.Thus,we propose a cloud storage system which can solve the security problem of CSS for mobile devices using the personal computer.Our system is deigned to store and manage files through the direct communication between mobile devices and personal computer storages by using the software as a service(SaaS),one of computing services,instead of directly storing files into cloud storages.展开更多
Cloud computing is becoming the developing trend in the information field.It causes many transforms in the related fields.In order to adapt such changes,computer forensics is bound to improve and integrate into the ne...Cloud computing is becoming the developing trend in the information field.It causes many transforms in the related fields.In order to adapt such changes,computer forensics is bound to improve and integrate into the new environment.This paper stands on this point,suggests a computer forensic service framework which is based on security architecture of cloud computing and requirements needed by cloud computing environment.The framework introduces honey farm technique,and pays more attention on active forensics,which can improve case handling efficiency and reduce the cost.展开更多
Higher and more requirements on experiments and innovation projects of computer science courses is brought forward to promote the "Double First Class". For these requirements, the cloud-based experiment and ...Higher and more requirements on experiments and innovation projects of computer science courses is brought forward to promote the "Double First Class". For these requirements, the cloud-based experiment and innovation project supporting platform is introduced in this paper. On the one hand, the platform could satisfy the diversified resource requirements of both teachers and students in course experiments and innovation projects. On the other hand, the feature of "construct once and access anywhere" could achieve higher resource utilization rate and lower costs than the traditional "lab-based" experiment mode. The supporting platform has been applied to practice and gains a lot of positive feedbacks.展开更多
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi...The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.展开更多
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th...Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.展开更多
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approach...The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.展开更多
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface t...The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant No.61502526)
文摘To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT)within existing technology,this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2n)),which could realize large-scale QFT using an arbitrary-scale quantum register.By developing a feasible method to realize the control quantum gate Rk,we experimentally realize the 2-bit semiclassical QFT over Z_(2-3)on IBM's quantum cloud computer,which shows the feasibility of the method.Then,we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT,which is mainly due to fewer two-qubit gates in the semiclassical QFT.Furthermore,based on the proposed method,N=15 is successfully factorized by implementing Shor's algorithm.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金Pawel Lula’s participation in the research has been carried out as part of a research initiative financed by Ministry of Science and Higher Education within“Regional Initiative of Excellence”Programme for 2019-2022.Project no.:021/RID/2018/19.Total financing 11897131.40 PLN.The other authors received no specific funding for this study.
文摘Our primary research hypothesis stands on a simple idea:The evolution of top-rated publications on a particular theme depends heavily on the progress and maturity of related topics.And this even when there are no clear relations or some concepts appear to cease to exist and leave place for newer ones starting many years ago.We implemented our model based on Computer Science Ontology(CSO)and analyzed 44 years of publications.Then we derived the most important concepts related to Cloud Computing(CC)from the scientific collection offered by Clarivate Analytics.Our methodology includes data extraction using advanced web crawling techniques,data preparation,statistical data analysis,and graphical representations.We obtained related concepts after aggregating the scores using the Jaccard coefficient and CSO Ontology.Our article reveals the contribution of Cloud Computing topics in research papers in leading scientific journals and the relationships between the field of Cloud Computing and the interdependent subdivisions identified in the broader framework of Computer Science.
文摘A dynamic clustering method based on multispectral satellite imagery to identify the different features is described. The channel combinations selected are for the different purposes in classification. Several cases are presented using the polar-orbiting satellite imageries.
文摘A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 km, 8.3 and 11 km, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time, are simulated. The model results at the satellite receiving time are compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material are similar to that of the cloud track. The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, vidth, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L-1are simulated in order to understand the variations of influencing range.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-H0301-12-2006)
文摘In recent years,the use of mobile devices such as smart phones,tablet PCs,etc.is rapidly increasing.In case of these mobile devices,the storage space is limited due to their characteristics.To make up for the limited space of storage in mobile devices,several methods are being researched.Of these,cloud storage service(CSS),one of cloud computing services,is an efficient solution to compensate such limited storage space.CSS is a service of storing files to the storage and thus getting access to stored files through networks(Internet)at anytime,anywhere.As for the existing CSS,users store their personally important files in the cloud storage,not in their own computers.It may cause security problems such as the leaking of information from private files or the damaging to the information.Thus,we propose a cloud storage system which can solve the security problem of CSS for mobile devices using the personal computer.Our system is deigned to store and manage files through the direct communication between mobile devices and personal computer storages by using the software as a service(SaaS),one of computing services,instead of directly storing files into cloud storages.
基金Sponsored by the National Social Science Found of China(Grant No.13CFX054)the Project of Humanities and Social Science of Chinese Ministry of Education(Grant No.11YJCZH175)
文摘Cloud computing is becoming the developing trend in the information field.It causes many transforms in the related fields.In order to adapt such changes,computer forensics is bound to improve and integrate into the new environment.This paper stands on this point,suggests a computer forensic service framework which is based on security architecture of cloud computing and requirements needed by cloud computing environment.The framework introduces honey farm technique,and pays more attention on active forensics,which can improve case handling efficiency and reduce the cost.
基金supported by Study and Practice of Practice Education Integrated Service Architecture and Education Mode based on Cloud,which is one of Education Research and Reform Projects of Beijing University of Posts and Telecommunications(2015)and the open project of Science and Technology on Communication Networks Laboratory
文摘Higher and more requirements on experiments and innovation projects of computer science courses is brought forward to promote the "Double First Class". For these requirements, the cloud-based experiment and innovation project supporting platform is introduced in this paper. On the one hand, the platform could satisfy the diversified resource requirements of both teachers and students in course experiments and innovation projects. On the other hand, the feature of "construct once and access anywhere" could achieve higher resource utilization rate and lower costs than the traditional "lab-based" experiment mode. The supporting platform has been applied to practice and gains a lot of positive feedbacks.
文摘The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.
基金supported By Grant (PLN2022-14) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)。
文摘Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity.
文摘The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.42230601).
文摘The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.