The process of converting audit findings into actionable improvement measures within an enterprise is pivotal for achieving the“value-added”objective of internal audits and fostering sustainable business development...The process of converting audit findings into actionable improvement measures within an enterprise is pivotal for achieving the“value-added”objective of internal audits and fostering sustainable business development.By elucidating the definition and significance of transforming internal audit results,this study underscores the imperative of applying and effectively converting these findings.Additionally,it seeks to streamline the value assessment framework for internal audit result transformation and delineates key factors that impede this transformation.Furthermore,this study explores strategies to bolster the closed-loop audit management system and outlines specific methods for enhancing the transformation of internal audit results within the enterprise,thereby contributing to its overall progress.展开更多
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot...Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.展开更多
As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-govern...As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-government water resource management,and inefficient water use.Existing research has predominantly focused on individual hydrological processes,such as glacier retreat,snow cover change,or transboundary water issues,but it has yet to fully capture the overall complexity of water system.Tajikistan’s water system functions as an integrated whole from mountain runoff to downstream supply,but a comprehensive study of its water resource has yet to be conducted.To address this research gap,this study systematically examined the status,challenges,and sustainable management strategies of Tajikistan’s water resources based on a literature review,remote sensing data analysis,and case studies.Despite Tajikistan’s relative abundance of water resources,global warming is accelerating glacier melting and altering the hydrological cycles,which have resulted in unstable runoff patterns and heightened risks of extreme events.In Tajikistan,outdated infrastructure and poor management are primary causes of low water-use efficiency in the agricultural sector,which accounts for 85.00%of the total water withdrawals.At the governance level,Tajikistan faces challenges in balancing the water-energy-food nexus and transboundary water resource issues.To address these issues,this study proposes core paths for Tajikistan to achieve sustainable water resource management,such as accelerating technological innovation,promoting water-saving agricultural technologies,improving water resource utilization efficiency,and establishing a community participation-based comprehensive management framework.Additionally,strengthening cross-border cooperation and improving real-time monitoring systems have been identified as critical steps to advance sustainable water resource utilization and evidence-based decision-making in Tajikistan and across Central Asia.展开更多
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods...Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.展开更多
Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2)...Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.展开更多
The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This rev...The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.展开更多
Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods a...Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.展开更多
Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti...Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.展开更多
Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu prov...Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.展开更多
Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and...Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and exhibits high genetic diversity,corresponding to the geographical distribution of its seven principal distinct clades across West Africa[1].LASV was first isolated in 1969 from an American missionary nurse stationed in the rural town of Lassa,Borno State,Nigeria,following her return from a brief vacation in the United States[2].展开更多
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. T...The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.展开更多
Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized ...Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized step-up strate-gies,the clinical practice remains heterogeneous,with variability in endoscopic strategies,procedural timing,device selection,and adjunctive techniques contri-buting to inconsistent outcomes.This review synthesizes current evidence to contribute to a structured framework integrating multidisciplinary team decision-making,advanced imaging(three-dimensional reconstruction,contrast-enhanced computed tomography/magnetic resonance imaging),EUS assessment,and biomarker-driven risk stratification(C-reactive protein,procalcitonin)to optimize patient selection,intervention timing,and complication management.Key stan-dardization components include endoscopic assessment and procedural strate-gies,optimal timing of intervention,personalized approaches for complex pan-creatic collections,and techniques to reduce the number of endoscopic debride-ments and mitigate complications.This work aims to enhance clinical outcomes,minimize practice heterogeneity,and establish a foundation for future research and guideline development in endoscopic management of INP.展开更多
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ...To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.展开更多
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces...In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.展开更多
In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless...In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.展开更多
The rice leaffolder,Cnaphalocrocis medinalis(Guenée),is a major migratory insect pest in paddy fields that damages rice by folding and feeding on leaves,causing chlorophyll loss and resulting in significant yield...The rice leaffolder,Cnaphalocrocis medinalis(Guenée),is a major migratory insect pest in paddy fields that damages rice by folding and feeding on leaves,causing chlorophyll loss and resulting in significant yield losses when its population density exceeds an economic threshold.Sustainable pest management requires‘green plant protection’solutions.Advances in science and technology have introduced numerous green methods for sustainable management of the rice leaffolder.This paper reviews recent research advancements in rice leaffolder management,such as ecological regulation,healthy cultivation,behavioral regulation,biological control,and rational insecticide application.Based on accurate monitoring and early warning systems,rice leaffolder management can incorporate comprehensive green control products,green control technologies,and control modes.This paper provides prospects for discussing the future of rice leaffolder management,achieving sustainable management of the rice leaffolder,and ensuring rice production safety.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement ...This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.展开更多
文摘The process of converting audit findings into actionable improvement measures within an enterprise is pivotal for achieving the“value-added”objective of internal audits and fostering sustainable business development.By elucidating the definition and significance of transforming internal audit results,this study underscores the imperative of applying and effectively converting these findings.Additionally,it seeks to streamline the value assessment framework for internal audit result transformation and delineates key factors that impede this transformation.Furthermore,this study explores strategies to bolster the closed-loop audit management system and outlines specific methods for enhancing the transformation of internal audit results within the enterprise,thereby contributing to its overall progress.
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金the National Natural Science Foundation of China(Nos.62374029,22175029,62474033,and W2433038)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220550)+2 种基金the Sichuan Science and Technology Program(No.2024NSFSC0250)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2022J032).
文摘Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.
基金supported by the National Natural Science Foundation of China(W2412135)the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
文摘As a major source of freshwater in Central Asia,Tajikistan is endowed with abundant glaciers and water resources.However,the country faces multiple challenges,including accelerated glacier retreat,complex inter-government water resource management,and inefficient water use.Existing research has predominantly focused on individual hydrological processes,such as glacier retreat,snow cover change,or transboundary water issues,but it has yet to fully capture the overall complexity of water system.Tajikistan’s water system functions as an integrated whole from mountain runoff to downstream supply,but a comprehensive study of its water resource has yet to be conducted.To address this research gap,this study systematically examined the status,challenges,and sustainable management strategies of Tajikistan’s water resources based on a literature review,remote sensing data analysis,and case studies.Despite Tajikistan’s relative abundance of water resources,global warming is accelerating glacier melting and altering the hydrological cycles,which have resulted in unstable runoff patterns and heightened risks of extreme events.In Tajikistan,outdated infrastructure and poor management are primary causes of low water-use efficiency in the agricultural sector,which accounts for 85.00%of the total water withdrawals.At the governance level,Tajikistan faces challenges in balancing the water-energy-food nexus and transboundary water resource issues.To address these issues,this study proposes core paths for Tajikistan to achieve sustainable water resource management,such as accelerating technological innovation,promoting water-saving agricultural technologies,improving water resource utilization efficiency,and establishing a community participation-based comprehensive management framework.Additionally,strengthening cross-border cooperation and improving real-time monitoring systems have been identified as critical steps to advance sustainable water resource utilization and evidence-based decision-making in Tajikistan and across Central Asia.
基金supported by the project“Romanian Hub for Artificial Intelligence-HRIA”,Smart Growth,Digitization and Financial Instruments Program,2021–2027,MySMIS No.334906.
文摘Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results.
基金supported by the National Natural Science Foundation of China(22168008,22378085)the Guangxi Natural Science Foundation(2024GXNSFDA010053)+1 种基金the Technology Development Project of Guangxi Bossco Environmental Protection Technology Co.,Ltd(202100039)Innovation Project of Guangxi Graduate Education(YCBZ2024065).
文摘Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.
文摘The integration of Artificial Intelligence(AI)and Machine Learning(ML)into groundwater exploration and water resources management has emerged as a transformative approach to addressing global water challenges.This review explores key AI and ML concepts,methodologies,and their applications in hydrology,focusing on groundwater potential mapping,water quality prediction,and groundwater level forecasting.It discusses various data acquisition techniques,including remote sensing,geospatial analysis,and geophysical surveys,alongside preprocessing methods that are essential for enhancing model accuracy.The study highlights AI-driven solutions in water distribution,allocation optimization,and realtime resource management.Despite their advantages,the application of AI and ML in water sciences faces several challenges,including data scarcity,model reliability,and the integration of these tools with traditional water management systems.Ethical and regulatory concerns also demand careful consideration.The paper also outlines future research directions,emphasizing the need for improved data collection,interpretable models,real-time monitoring capabilities,and interdisciplinary collaboration.By leveraging AI and ML advancements,the water sector can enhance decision-making,optimize resource distribution,and support the development of sustainable water management strategies.
文摘Rapid evolutions of the Internet of Electric Vehicles(IoEVs)are reshaping and modernizing transport systems,yet challenges remain in energy efficiency,better battery aging,and grid stability.Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand,thus increasing energy costs and battery aging.This study proposes a smart charging station with an AI-powered Battery Management System(BMS),developed and simulated in MATLAB/Simulink,to increase optimality in energy flow,battery health,and impractical scheduling within the IoEV environment.The system operates through real-time communication,load scheduling based on priorities,and adaptive charging based on batterymathematically computed State of Charge(SOC),State of Health(SOH),and thermal state,with bidirectional power flow(V2G),thus allowing EVs’participation towards grid stabilization.Simulation results revealed that the proposed model can reduce peak grid load by 37.8%;charging efficiency is enhanced by 92.6%;battery temperature lessened by 4.4℃;SOH extended over 100 cycles by 6.5%,if compared against the conventional technique.By this way,charging time was decreased by 12.4% and energy costs dropped by more than 20%.These results showed that smart charging with intelligent BMS can boost greatly the operational efficiency and sustainability of the IoEV ecosystem.
基金supported by the National Natural Science Foundation of China(No.52070057)China Postdoctoral Science Foundation(No.2023M730855)Heilongjiang Postdoctoral Fund(No.LBH-Z22183)for financial support。
文摘Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.
基金National Natural Science Foundation of China,No.42101252。
文摘Rapid regional population shifts and spatial polarization have heightened pressure on cultivated land—a critical resource demanding urgent attention amid ongoing urban-rural transition.This study selects Jiangsu province,a national leader in both economic and agricultural development,as a case area to construct a multidimensional framework for assessing the recessive morphological characteristics of multifunctional cultivated land use.We examine temporal dynamics,spatial heterogeneity,and propose an integrated zoning strategy based on empirical analysis.The results reveal that:(1)The recessive morphology index shows a consistent upward trend,with structural breaks in 2007 and 2013,and a spatial shift from“higher in the east and lower in the west”to“higher in the south and lower in the north.”(2)Coordination among sub-dimensions of the index has steadily improved.(3)The index is expected to continue rising in the next decade,though at a slower pace.(4)To promote coordinated multidimensional land-use development,we recommend a policy framework that reinforces existing strengths,addresses weaknesses,and adapts zoning schemes to current spatial conditions.This research offers new insights into multifunctional cultivated land systems and underscores their role in enhancing human well-being,securing food supply,and supporting sustainable urban-rural integration.
文摘Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and exhibits high genetic diversity,corresponding to the geographical distribution of its seven principal distinct clades across West Africa[1].LASV was first isolated in 1969 from an American missionary nurse stationed in the rural town of Lassa,Borno State,Nigeria,following her return from a brief vacation in the United States[2].
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
基金the Important National Science & Technology Specific Projects of China (Grant No. 2011ZX05024-004)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No. JQ201115)+2 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-11-0734)the Fundamental Research Funds for the Central Universities (Grant No. 13CX05007A, 13CX05016A)the Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)
文摘The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.
基金Supported by the Education and Teaching Reform Project of the First Clinical College of Chongqing Medical University,No.CMER202305Natural Science Foundation of Xizang Autonomous Region,No.XZ2024ZR-ZY100(Z)Program for Youth Innovation in Future Medicine,Chongqing Medical University,China,No.W0138.
文摘Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized step-up strate-gies,the clinical practice remains heterogeneous,with variability in endoscopic strategies,procedural timing,device selection,and adjunctive techniques contri-buting to inconsistent outcomes.This review synthesizes current evidence to contribute to a structured framework integrating multidisciplinary team decision-making,advanced imaging(three-dimensional reconstruction,contrast-enhanced computed tomography/magnetic resonance imaging),EUS assessment,and biomarker-driven risk stratification(C-reactive protein,procalcitonin)to optimize patient selection,intervention timing,and complication management.Key stan-dardization components include endoscopic assessment and procedural strate-gies,optimal timing of intervention,personalized approaches for complex pan-creatic collections,and techniques to reduce the number of endoscopic debride-ments and mitigate complications.This work aims to enhance clinical outcomes,minimize practice heterogeneity,and establish a foundation for future research and guideline development in endoscopic management of INP.
基金National Key R&D Program of China of the 13th Five-Year Plan(No.2018YFD1100704)。
文摘To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900504).
文摘In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.
基金supported in part by the National Natural Science Foundation of China under Grant 62225103,U22B2003,U2441227,and U24A20211the Beijing Natural Science Foundation under Grant L241008+3 种基金the Defense Industrial Technology Development Program JCKY2022110C010the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230201the Fundamental Research Funds for the Central Universities under Grant FRFTP-22-002C2the Xiaomi Fund of Young Scholar。
文摘In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24C140007)the earmarked fund for the China Agriculture Research System(Grant No.CARS-01).
文摘The rice leaffolder,Cnaphalocrocis medinalis(Guenée),is a major migratory insect pest in paddy fields that damages rice by folding and feeding on leaves,causing chlorophyll loss and resulting in significant yield losses when its population density exceeds an economic threshold.Sustainable pest management requires‘green plant protection’solutions.Advances in science and technology have introduced numerous green methods for sustainable management of the rice leaffolder.This paper reviews recent research advancements in rice leaffolder management,such as ecological regulation,healthy cultivation,behavioral regulation,biological control,and rational insecticide application.Based on accurate monitoring and early warning systems,rice leaffolder management can incorporate comprehensive green control products,green control technologies,and control modes.This paper provides prospects for discussing the future of rice leaffolder management,achieving sustainable management of the rice leaffolder,and ensuring rice production safety.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
基金the National Natural Science Foundation of China(Grant No.:71771061).
文摘This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.