The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technolog...The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.展开更多
The three-dimensional visualization of flow and screech-tone emission from an underexpanded circular jet is first investigated experimentally using high-speed cross-schlieren imaging and microphone measurements in the...The three-dimensional visualization of flow and screech-tone emission from an underexpanded circular jet is first investigated experimentally using high-speed cross-schlieren imaging and microphone measurements in the cross-sectional planes along the jet axis. This experimental technique allows the visualization of the shock-cell structure, directivity of sound intensity, and frequency spectrum in the cross-sectional planes of the screeching jet. The high-speed cross-schlieren observation of the screeching jet shows the occurrence of an asymmetrical shock-cell structure that is generated by the flapping mode in the screeching jet. This contributes to the generation of a screech tone propagating upstream along the jet axis and non-uniform sound intensities around the jet in circumferential direction. These observations by high-speed cross</span><span style="white-space:normal;font-size:10pt;font-family:"">-</span><span style="white-space:normal;font-size:10pt;font-family:"">schlieren imaging were validated by the microphone measurements.展开更多
Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of scre...Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of screech phenomenon. The stagnation temperature of the cold and the hot jets are 299 K and 319 K respectively. The axial distribution of the centerline Mach number was obtained with a pitot tube, while the screech data (frequency and amplitude) at different axial and radial stations were measured with the aid of microphones. The fundamental screech frequency of the hot jet is slightly increased relative to that of the cold jet. It is concluded that temperature effects on the screech amplitude are manifested with regard to the fundamental and the subharmonic even at relatively small temperature range considered.展开更多
The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type n...The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5 ×104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1 .Ode. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed.展开更多
Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Theref...Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carded out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.展开更多
The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice(hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transit...The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice(hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transitional region,and the exit Reynolds number of the jet was 50000.For comparison,a round jet with identical normalized boundary conditions was also measured.It is shown that the diamond jet decays and spreads faster than the round jet does over the measured flow region.The axis-switching phenomenon is observed in the diamond jet.Although both jets display primary coherent structures in the near field,these structures are found to break down more rapidly in the diamond jet,due to the higher three-dimensionality of the flow.Moreover,the streamwise components of the Reynolds normal stress and all the shear stresses reach their maxima around the location of the maximal mean shear while the maxima of the lateral components of the Reynolds normal stresses occur around the centreline of the jet.展开更多
基金Project(2010CB630800)supported by the National Basic Research Program of ChinaProject(N100307003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.
文摘The three-dimensional visualization of flow and screech-tone emission from an underexpanded circular jet is first investigated experimentally using high-speed cross-schlieren imaging and microphone measurements in the cross-sectional planes along the jet axis. This experimental technique allows the visualization of the shock-cell structure, directivity of sound intensity, and frequency spectrum in the cross-sectional planes of the screeching jet. The high-speed cross-schlieren observation of the screeching jet shows the occurrence of an asymmetrical shock-cell structure that is generated by the flapping mode in the screeching jet. This contributes to the generation of a screech tone propagating upstream along the jet axis and non-uniform sound intensities around the jet in circumferential direction. These observations by high-speed cross</span><span style="white-space:normal;font-size:10pt;font-family:"">-</span><span style="white-space:normal;font-size:10pt;font-family:"">schlieren imaging were validated by the microphone measurements.
文摘Experiments are performed in choked circular hot and cold nitrogen jets issuing from a 2.44 cm diameter sharp-edged orifice at a fully expanded jet Mach number of 1.85 in an effort to investigate the character of screech phenomenon. The stagnation temperature of the cold and the hot jets are 299 K and 319 K respectively. The axial distribution of the centerline Mach number was obtained with a pitot tube, while the screech data (frequency and amplitude) at different axial and radial stations were measured with the aid of microphones. The fundamental screech frequency of the hot jet is slightly increased relative to that of the cold jet. It is concluded that temperature effects on the screech amplitude are manifested with regard to the fundamental and the subharmonic even at relatively small temperature range considered.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072005 and 10921202)the Fundamental Research Funds for the Central Universities,China(Grant No.3132013029)
文摘The effect of a cross-sectional exit plane on the downstream mixing characteristics of a circular turbulent jet is in- vestigated using large eddy simulation (LES). The turbulent jet is issued from an orifice-type nozzle at an exit Reynolds number of 5 ×104. Both instantaneous and statistical velocity fields of the jet are provided. Results show that the rates of the mean velocity decay and jet spread are both higher in the case with the exit plate than without it. The existence of the plate is found to increase the downstream entrainment rate by about 10% on average over the axial range of 8-30de (exit diameter). Also, the presence of the plate enables the formation of vortex rings to occur further downstream by 0.5-1 .Ode. A physical insight into the near-field jet is provided to explain the importance of the boundary conditions in the evolution of a turbulent jet. In addition, a method of using the decay of the centreline velocity and the half-width of the jet to calculate the entrainment rate is proposed.
文摘Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carded out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072005 and 10921202)
文摘The present paper reports the first investigation on a turbulent jet issuing from a diamond orifice(hereafter termed a "diamond jet") with an aspect ratio of 1.7.Velocity measurements were conducted in the transitional region,and the exit Reynolds number of the jet was 50000.For comparison,a round jet with identical normalized boundary conditions was also measured.It is shown that the diamond jet decays and spreads faster than the round jet does over the measured flow region.The axis-switching phenomenon is observed in the diamond jet.Although both jets display primary coherent structures in the near field,these structures are found to break down more rapidly in the diamond jet,due to the higher three-dimensionality of the flow.Moreover,the streamwise components of the Reynolds normal stress and all the shear stresses reach their maxima around the location of the maximal mean shear while the maxima of the lateral components of the Reynolds normal stresses occur around the centreline of the jet.