In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,prov...In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.展开更多
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o...With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.展开更多
Performance Management is the core course of human resource management major,but its knowledge points lack multi-dimensional correlations.There are problems such as scattered content and unclear system,and it is urgen...Performance Management is the core course of human resource management major,but its knowledge points lack multi-dimensional correlations.There are problems such as scattered content and unclear system,and it is urgent to reconstruct the content system of the course.Knowledge graph technology can integrate massive and scattered information into an organic structure through semantic correlation and reasoning.The application of knowledge graph to education and teaching can promote scientific and personalized teaching evaluation and better realize individualized teaching.This paper systematically combs the knowledge points of Performance Management course and forms a comprehensive knowledge graph.The knowledge point is associated with specific questions to form the problem map of the course,and then the knowledge point is further associated with the ability target to form the ability map of the course.Then,the knowledge point is associated with teaching materials,question bank and expansion resources to form a systematic teaching database,thereby giving the method of building the content system of Performance Management course based on the knowledge map.This research can be further extended to other core management courses to realize the deep integration of knowledge graph and teaching.展开更多
DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improve...DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improves the results of[Discrete Math.,2018,341(7):1983–1986]and[Discrete Appl.Math.,2020,277:245–251].展开更多
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi...With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.展开更多
Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the know...Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth...Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.展开更多
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo...After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.展开更多
Segmentation of three-dimensional(3D) complicated structures is of great importance for many real applications.In this work we combine graph cut minimization method with a variant of the level set idea for 3D segmenta...Segmentation of three-dimensional(3D) complicated structures is of great importance for many real applications.In this work we combine graph cut minimization method with a variant of the level set idea for 3D segmentation based on the Mumford-Shah model.Compared with the traditional approach for solving the Euler-Lagrange equation we do not need to solve any partial differential equations.Instead,the minimum cut on a special designed graph need to be computed.The method is tested on data with complicated structures.It is rather stable with respect to initial value and the algorithm is nearly parameter free.Experiments show that it can solve large problems much faster than traditional approaches.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway a...By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.展开更多
In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have disc...In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its pow...The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as ...Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
基金University-level Scientific Research Project in Natural Sciences“Research on the Retrieval Method of Multimodal First-Class Course Teaching Content Based on Knowledge Graph Collaboration”(GKY-2024KYYBK-31)。
文摘In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.
基金supported by the National Natural Science Foundation of China(grant numbers 62267005 and 42365008)the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing.
文摘With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.
基金Education and Teaching Reform Research Project of Chongqing Institute of Engineering(JY2023206)。
文摘Performance Management is the core course of human resource management major,but its knowledge points lack multi-dimensional correlations.There are problems such as scattered content and unclear system,and it is urgent to reconstruct the content system of the course.Knowledge graph technology can integrate massive and scattered information into an organic structure through semantic correlation and reasoning.The application of knowledge graph to education and teaching can promote scientific and personalized teaching evaluation and better realize individualized teaching.This paper systematically combs the knowledge points of Performance Management course and forms a comprehensive knowledge graph.The knowledge point is associated with specific questions to form the problem map of the course,and then the knowledge point is further associated with the ability target to form the ability map of the course.Then,the knowledge point is associated with teaching materials,question bank and expansion resources to form a systematic teaching database,thereby giving the method of building the content system of Performance Management course based on the knowledge map.This research can be further extended to other core management courses to realize the deep integration of knowledge graph and teaching.
基金Partially supported by NSFC(No.12301436)NSF of Guangxi Province(No.2025GXNSFAA069811)。
文摘DP-coloring as a generalization of list coloring was introduced recently by Dvo˘r´ak and Postle.In this paper,we show that planar graphs without 5-cycles adjacent to two triangles are DP-4-colorable,which improves the results of[Discrete Math.,2018,341(7):1983–1986]and[Discrete Appl.Math.,2020,277:245–251].
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011).
文摘With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2145).
文摘Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金supported by the National Natural Science Foundation of China(61732018,61872335,61802367,61876215)the Strategic Priority Research Program of Chinese Academy of Sciences(XDC05000000)+1 种基金Beijing Academy of Artificial Intelligence(BAAI),the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing(2019A07)the Open Project of Zhejiang Laboratory,and a grant from the Institute for Guo Qiang,Tsinghua University.Recommended by Associate Editor Long Chen.
文摘Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.
文摘After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced.
基金support from the Centre for Integrated Petroleum Research(CIPR),University of Bergen, Norway,and Singapore MOE Grant T207B2202NRF2007IDMIDM002-010
文摘Segmentation of three-dimensional(3D) complicated structures is of great importance for many real applications.In this work we combine graph cut minimization method with a variant of the level set idea for 3D segmentation based on the Mumford-Shah model.Compared with the traditional approach for solving the Euler-Lagrange equation we do not need to solve any partial differential equations.Instead,the minimum cut on a special designed graph need to be computed.The method is tested on data with complicated structures.It is rather stable with respect to initial value and the algorithm is nearly parameter free.Experiments show that it can solve large problems much faster than traditional approaches.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
文摘By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.
文摘In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Project (2004036125) supported by Postdoctoral Science Foundation of China project(2002F008 2003F012) supportedby the Science and Technology Research and Development Planning Projects of the Ministry of Railway of China
文摘The graph overlay method is used to evaluate the noise impact of route alignment and the results can serve as a reference for the route alignment optimal selection. The geographic information system(GIS), with its powerful function of handling attribute data and spatial analysis, is adopted to calculate the noise comprehensive impact area of each alignment. With the graph overlay method, the noise vulnerability and noise impact distribution are both taken into account in the noise impact assessment of route alignment. With GIS, the efficiency of work and the reliability of result are greatly improved. By a combination of them, the noise impact on environment is fully presented in a visual way and the assessment result has vital value in route alignment optimal selection. A detailed case study is illustrated and the efficiency of the method is verified.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金supported by the Natural Science Foundation of Ningxia Province(No.2023AAC03316)the Ningxia Hui Autonomous Region Education Department Higher Edu-cation Key Scientific Research Project(No.NYG2022051)the North Minzu University Graduate Innovation Project(YCX23146).
文摘Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.