Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of re...Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of resistance genes and MAS. Two sets of BC3 progenies, one (BC3Q) derived from the cross Qi319 (resistance)×Huangzao 4 (susceptible), the other (BC3M) from Mol7 (resistance)× Huangzao 4 (susceptible), were generated. Huangzao 4 was the recurrent parent in both progenies. A combination of BSA (bulked segregant analysis) with AFLP (amplified fragment length polymorphism) method was applied to map the genes involving the resistance to S. reiliana, and corresponding resistant and susceptible bulks and their parental lines were used for screening polymorphic AFLP primer pairs. One fragment of PI3M61-152 was converted into SCAR (sequence charactered amplified fragment) marker S130. The marker was mapped at chromosome bin 2.09, the interval of a major QTL region previously reported to contribute to S. reiliana resistance. Furthermore, S130 was highly and facilitate map-based cloni associated with resistance to S. reiliana, and could be useful for marker-assisted selection ng of resistance genes.展开更多
Self-biting disease occurred in most farmed fur animals in the world. The mechanism and rapid detection method of this disease has not been reported. We applied bulked sergeant analysis (BSA) in combination with RAP...Self-biting disease occurred in most farmed fur animals in the world. The mechanism and rapid detection method of this disease has not been reported. We applied bulked sergeant analysis (BSA) in combination with RAPD method to analyze a molecular genetic marker linked with self-biting trait in mink group. The molecular marker was converted into sequence-characterized amplified regions (SCAR) marker for rapid detection of this disease. A single RAPD marker A8 amplified a specific band of 263bp in self-biting minks, which was designated as SRA8-250, and non-specific band of 315bp in both self-biting and healthy minks. The sequences of the bands exhibited 75% and 88% similarity to Canis familiarizes major histocompatibility complex (MHC) class II region and Macaca mulatta MHC class I region, respectively. A SCAR marker SCAR-A8 was designed for the specific fragment SRA8-250 and validated in 30 self-biting minks and 30 healthy minks. Positive amplification of SCAR-A8 was detected in 24 self-biting minks and 12 healthy minks. χ2 test showed significant difference (p〈0.01) in the detection rate between the two groups. This indicated that SRA8-250 can be used as a positive marker to detect self-biting disease in minks. Furthermore, the finding that self-biting disease links with MHC genes has significant implications for the mechanism of the disease.展开更多
To screen genetic polymorphisms of Panax ginseng, as well as those of Panax quinquefolium and Panax notoginseng, analysis of random amplified polymorphic DNA (RAPD) was performed using 120 random primers. Of the suc...To screen genetic polymorphisms of Panax ginseng, as well as those of Panax quinquefolium and Panax notoginseng, analysis of random amplified polymorphic DNA (RAPD) was performed using 120 random primers. Of the successful amplicons obtained, the Panax ginseng-specific RAPD marker C-12 was cloned into a TA vector and sequenced (Genl3ank access number KU553472). Based on the sequence analysis results, a pair of primers specific to C-12 was designed. Finally, a SCAR marker-based identification system for Panax ginseng was developed after optimization of the reaction conditions. Using this method, two positive bands were stably observed at 300 bp and 130 bp in 33 batches of Panax ginseng samples tested, while negative results were obtained for another 101 batches of samples, including Panax quinquefolium, Panax notoginseng, adulterants, and other medicinal herbs. Thus, we successfully developed a PCR-based method for rapid and effective identification of Panax ginseng, which can be effectively used for the protection and utilization of germplasm resources and identification of the origins of Panax ginseng samples.展开更多
In a double-well system, we investigate theoretically the population distribution of a particle perturbed by a weak sinusoidal signal with a Gaussian white noise accompanied. Our numerical simulation shows that the pr...In a double-well system, we investigate theoretically the population distribution of a particle perturbed by a weak sinusoidal signal with a Gaussian white noise accompanied. Our numerical simulation shows that the probability of the particle staying in the right potential well, Pn, exhibits an extreme value at specific noise intensity D depending on the frequency of the sinusoidal signal, which is a key feature of stochastic resonance. This is confirmed by calculating the power spectrum of the output signal, in which the extreme value of the amplitude locates at the same noise intensity. These results provide us with a new way to quantify the stochastic resonance by measuring the population distribution of the particle.展开更多
Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials develop...Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re-sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.展开更多
Dear Editor,The brain experiences ongoing changes across different ages to support brain development and functional reorganization.During the span of adulthood,although the brain has matured from a neurobiological per...Dear Editor,The brain experiences ongoing changes across different ages to support brain development and functional reorganization.During the span of adulthood,although the brain has matured from a neurobiological perspective,it is still continuously shaped by external factors such as habits,the family setting,socioeconomic status,and the work environment [1].In contrast to chronological age (CA),brain(or biological) age (BA) is conceptualized as an important index for characterizing the aging process and neuropsychological state,as well as individual cognitiveperformance.Growing evidence indicates that BA can be assessed by neuroimaging techniques,including MRI [2].展开更多
The growth performance of a selected F1 rainbow trout genetically characterized as polymorphic with locus Omy207UoG (NA = 13, PIC = 0.891, HE = 0.9003) was evaluated in a recirculating aquaculture system (RAS). A set ...The growth performance of a selected F1 rainbow trout genetically characterized as polymorphic with locus Omy207UoG (NA = 13, PIC = 0.891, HE = 0.9003) was evaluated in a recirculating aquaculture system (RAS). A set of 157 rainbow trout of 37.8 g of mean body weight and 14.6 cm mean total length per tank, were introduced in each of six fish tank of 5 m3 connected to a recirculating aquaculture system (RAS). The trout was rearing during 317 days. Growth performance indicators and water quality were evaluated during the experiment. The genetically selected F1 rainbow trout showed a tendency towards homogeneity in growth performance along the culture period, reaching a mean total weight of 552.2 g. The length-weight relationship indicated an isometric growth (>3.0). This study presents the basis to establish a long-term marker-assisted selection program for rainbow trout culture in a subtropical region.展开更多
The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts(CTGs)obtained at different locations and depths in the human palate.Sixty-four CTGs belonging to anterior deep(AD),ant...The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts(CTGs)obtained at different locations and depths in the human palate.Sixty-four CTGs belonging to anterior deep(AD),anterior superficial(AS),posterior deep(PD),and posterior superficial(PS)groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally.Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts(HPFs)extracted from the CTGs.A clearly more pronounced location-dependent than depth-dependent difference between the grafts,with a minimal number of genes(4)showing no dependence on the location,was revealed.Epithelial,endothelial,and monocytic cell migration was strongly(P<0.001)potentiated by AD-and PS-HPFs.Moreover,significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly(P<0.01)activated p38 signaling suggested immunomodulatory phenotype for AD-and PS-HPFs.Increased growth factor gene expression and significantly activated(P<0.001)Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival,proliferation,and motility.Prominent collagen-rich expression profile contributing to high mechanical stability,increased osteogenesis-related gene expression,and strongly activated(P<0.001)Smad1/5/8 signaling characterized HPFs originating from P-CTGs.The present data indicate that in humans,differences between palatal CTGs harvested from different locations and depths appear to be location-rather than depth-dependent.Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.展开更多
The authors have retracted this article.After publication we found an error in the implementation code that resulted in data leakage in the age-prediction model training process.We have redesigned the prediction model...The authors have retracted this article.After publication we found an error in the implementation code that resulted in data leakage in the age-prediction model training process.We have redesigned the prediction model and tested the mode with an extended dataset(around 2000 subjects,in contrast to the 600 subjects in this article).展开更多
The selection of circuit model(i.e., parallel or series model) is critical when using a capacitance–frequency and capacitance–voltage technique to probe properties of organic materials and physical processes of or...The selection of circuit model(i.e., parallel or series model) is critical when using a capacitance–frequency and capacitance–voltage technique to probe properties of organic materials and physical processes of organic optoelectronic devices. In the present work, capacitances of ITO/Alq3/Al and ITO/CuPc/Al are characterized by series and parallel model,respectively. It is found that the large series resistance comes from the ITO electrode and results in the inapplicability of the parallel model to measuring the capacitances of organic devices at high frequencies. An equivalent circuit model with consideration of the parasitical inductance of cables is constructed to derive the capacitance, and actual capacitance–frequency spectra of Alq3 and CuPc devices are obtained. Further investigation of temperature-dependent capacitance–frequency and capacitance–voltage characteristics indicates that CuPc and Al form the Schottky contact, the density and ionization energy of impurities in CuPc are obtained. Moreover, more practical guidelines for accurate capacitance measurement are introduced instead of the impedance magnitude, which will be very helpful for the organic community to investigate capacitance-related characteristics when dealing with various organic optoelectronic devices.展开更多
Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closi...Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.展开更多
One of the big problems of the urban centres of the cities in Brazil is the growth of the generation of the Civil Construction Waste (CCW). A disturbing concern for the public and private sectors is to find proper d...One of the big problems of the urban centres of the cities in Brazil is the growth of the generation of the Civil Construction Waste (CCW). A disturbing concern for the public and private sectors is to find proper disposal of Urban Solid Waste (USW) in large cities, since suitable dumping sites for this waste are increasingly scarce due to the spread and development of large urban centres. In general, recycling is currently one of the procedures most studied by researchers for disposal of such waste. In this context and aiming a new application for recycled CCW aggregates, the research characterized the physical properties of the material to use in fill compaction piles in soil improvement. The analysis shows results from laboratorial tests executed in CCW recycled samples, which came from works in different construction stages from Recife-PE, and natural aggregate, adopted as a reference. Characterization tests were performed with samples CCW recycled CLue aggregates and samples of natural fine aggregate (stone powder). The results of characterization tests showed similarities between the CCW samples tested and the reference samples, indicating that the civil construction wastes has potcntial use as material for consolidation piles in foundation works.展开更多
Diaphragm structures with micron scale play a significant role in microtransducers and micro-nano devices, and the performance of these devices depends mainly on the dynamic behaviour of diaphragms. Micro-diaphragms a...Diaphragm structures with micron scale play a significant role in microtransducers and micro-nano devices, and the performance of these devices depends mainly on the dynamic behaviour of diaphragms. Micro-diaphragms are treated commonly as membranes and in some cases as plates or plates in tension (called TD plates for short), but they also show in many cases the behaviour of plates in tension and supported by air spring (called TDK plates for short). Therefore, it is necessary to perform systematic research on the dynamic behaviour of micro-diaphragms, and establish a characterized mathematical description. This paper focuses on the TDK plates since they possess universality, gives the corresponding basic equations, and then derives analytical solutions of TDK circular plates under clamped and simply supported boundary conditions. This paper also gives a 3D plot representation of characteristic curved surfaces, revealing the transition from the TDK and TD plate to the pure plate or pure membrane behaviour; and further uses the value φ to determine the property of diaphragms. Its two extreme cases, i.e. φ = 0 and φ = ∞ , correspond to pure plate or pure membrane, respectively. Thus, membrane, plate and TD plate can be treated as special cases of TDK plate. In addition, this paper reveals that the presence of air-spring not only enhances the restoring force of diaphragm such that increases its natural frequencies, but also results in the resonance of a dynamic system consisting of diaphragm and air-spring. These analytical and computational results are significant for the understanding of the operation mechanism of capacitive microtransducers and their optimized design.展开更多
In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented...In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.展开更多
Small things can show a person's true character Find lt What was the weather like when the girl came to the castle door?nce upon a time,there was a prince.He wanted to marry a real princess.He traveled all around ...Small things can show a person's true character Find lt What was the weather like when the girl came to the castle door?nce upon a time,there was a prince.He wanted to marry a real princess.He traveled all around the world looking for one.展开更多
The effects of development states on the artemisinin content of clone S1 of Artemisia anuua L. grown in a greenhouse were investigated in the present study. The artemisinin content increased gradually during the phase...The effects of development states on the artemisinin content of clone S1 of Artemisia anuua L. grown in a greenhouse were investigated in the present study. The artemisinin content increased gradually during the phase of vegetative growth and reached its highest level at 8-9 mg/g dry weight (DW) when the S1 was 6 months old on a long day (LD) photoperiod. Treatment with 9-18 d of short day (SD) photoperiod resulted in the artemisinin content reaching and being maintained at a higher level (2.059-2.289 mg/g DW), twofold that of control plants and plants of S1 presented at the pro-flower budding and flower-budding stages. The artemisinin content varied in different parts of the plant. The artemisinin content of leaves was higher than that of florets and branches. The artemisinin content in middle leaves was higher than that of bottom leaves, and then top leaves. Different densities of capitate glands (the storage organ of artemisinin) located on the surface of leaves, florets, and branches explained the variations in artemisinin content in these parts of the plant. The correlation coefficient between artemisinin content and density of capitate glands on the surface of different organs was 0.987. The genetic marker for artemisinin content was screened using random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) techniques. The random primer OPAl5 (5'-TTCCGAACCC-3') could amplify a specific band of approximately 1 000 bp that was present in all high-artemisinin yielding strains, but absent in all low-yielding strains in three independent replications. This specific band was cloned and its sequence was analyzed. This RAPD marker was converted into a SCAR marker to obtain a more stable marker.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial pheno...Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial phenomena such as zinc dendrite growth,parasitic side reactions,and the evolution of the solid electrolyte interphase.These processes are inherently dynamic and span multiple spatial and temporal scales,posing challenges to traditional ex situ characterization techniques.To address this,advanced in situ and operando techniques have been developed,broadly categorized into imaging,spectroscopic,synchrotron scattering/diffraction,and coupled mass spectrometry approaches.These methods enable real-time visualization and chemical analysis of the electrode/electrolyte interface,providing insights into nucleation and dissolution dynamics,interfacial chemical transformations,and the mechanisms driving dendrite formation and parasitic reactions.Through the integration of these complementary techniques,structural evolution can be correlated with electrochemical behavior,elucidating the underlying physicochemical mechanisms.This review systematically summarizes recent advances in in situ and operando characterization methods and highlights their contributions to understanding interfacial stability in aqueous ZIBs.Future directions emphasizing multi-modal strategies and data integration to guide the rational design of high-performance ZIBs are discussed.These insights are expected to accelerate the development of next-generation aqueous energy storage systems.展开更多
Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing car...Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.展开更多
Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy convers...Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy conversion efficiency.In certain application scenarios,the use of N_(2)O(a potent greenhouse gas),as an alternative oxidant to air,presents a feasible strategy.Herein,we report for the first time the operation of PCFCs employing N_(2)O as the oxidant.A hybrid Pr_(2)Ni_(0.6)Co_(0.4)O_(4-δ)(PNCO-214)catalyst is developed,comprising Ruddlesden-Popper(R-P)structured Pr_(4)Ni_(1.8)Co_(1.2)O_(10-δ)(PNCO-4310)and fluorite structured Pr_(6)O_(11)(PO-611),which synergistically exhibits exceptional catalytic activity toward both N_(2)O decomposition and the oxygen reduction reaction,achieving a conversion over 92% and an area specific resistance of 1.301Ω·cm^(2) at 600℃.Quasi-insitu temperature-dependent Fourier transform infrared(FTIR)and electrochemical impedance spectroscopy analyses reveal that abundant oxygen vacancies in PNCO-214 facilitate rapid adsorption and dissociation of N_(2)O into N_(2) and O_(2),while also promoting the surface exchange kinetics of proton/oxygen during oxygen reduction reaction(ORR).When applied in an anode-supported single cell with PNCO-214 cathode operating under N_(2)O,outstanding power density and low resistance are achieved,delivering 0.801 W·cm^(-2) and 0.245Ω·cm^(2) at 600℃.Satisfactory performance is also maintained even when the temperature is reduced to 500℃.Furthermore,the single cell demonstrates relatively good stability with negligible degradation over 130 h at 600℃ and 0.7 V.These findings underscore the potential of PNCO-214 as a highly effective cathode catalyst for enabling the use of N_(2)O as a viable oxidant in PCFCs for specific industrial applications.展开更多
基金funded by the National Hi-Tech R&D Program,China(863Program,2006AA100103,2007AA10Z172)the International Cooperation Project for Science and Technology(2007DFA31010)
文摘Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of resistance genes and MAS. Two sets of BC3 progenies, one (BC3Q) derived from the cross Qi319 (resistance)×Huangzao 4 (susceptible), the other (BC3M) from Mol7 (resistance)× Huangzao 4 (susceptible), were generated. Huangzao 4 was the recurrent parent in both progenies. A combination of BSA (bulked segregant analysis) with AFLP (amplified fragment length polymorphism) method was applied to map the genes involving the resistance to S. reiliana, and corresponding resistant and susceptible bulks and their parental lines were used for screening polymorphic AFLP primer pairs. One fragment of PI3M61-152 was converted into SCAR (sequence charactered amplified fragment) marker S130. The marker was mapped at chromosome bin 2.09, the interval of a major QTL region previously reported to contribute to S. reiliana resistance. Furthermore, S130 was highly and facilitate map-based cloni associated with resistance to S. reiliana, and could be useful for marker-assisted selection ng of resistance genes.
文摘Self-biting disease occurred in most farmed fur animals in the world. The mechanism and rapid detection method of this disease has not been reported. We applied bulked sergeant analysis (BSA) in combination with RAPD method to analyze a molecular genetic marker linked with self-biting trait in mink group. The molecular marker was converted into sequence-characterized amplified regions (SCAR) marker for rapid detection of this disease. A single RAPD marker A8 amplified a specific band of 263bp in self-biting minks, which was designated as SRA8-250, and non-specific band of 315bp in both self-biting and healthy minks. The sequences of the bands exhibited 75% and 88% similarity to Canis familiarizes major histocompatibility complex (MHC) class II region and Macaca mulatta MHC class I region, respectively. A SCAR marker SCAR-A8 was designed for the specific fragment SRA8-250 and validated in 30 self-biting minks and 30 healthy minks. Positive amplification of SCAR-A8 was detected in 24 self-biting minks and 12 healthy minks. χ2 test showed significant difference (p〈0.01) in the detection rate between the two groups. This indicated that SRA8-250 can be used as a positive marker to detect self-biting disease in minks. Furthermore, the finding that self-biting disease links with MHC genes has significant implications for the mechanism of the disease.
基金Project(2014ZX09304307-002)supported by the Major Program of Science and Technology Foundation of ChinaProject supported by Technology Platform for Quality/Safety Inspection and Risk Management of Traditional Chinese Medicine,China+1 种基金Project(2014SK2001)supported by the Key Program Foundation of Hunan Provincial Science&Technology Department,ChinaProject(XSYK-R201502)supported by the Hunan Provincial Food and Drug Administration under Key Project of Science and Technology for Food and Drug Safety,China
文摘To screen genetic polymorphisms of Panax ginseng, as well as those of Panax quinquefolium and Panax notoginseng, analysis of random amplified polymorphic DNA (RAPD) was performed using 120 random primers. Of the successful amplicons obtained, the Panax ginseng-specific RAPD marker C-12 was cloned into a TA vector and sequenced (Genl3ank access number KU553472). Based on the sequence analysis results, a pair of primers specific to C-12 was designed. Finally, a SCAR marker-based identification system for Panax ginseng was developed after optimization of the reaction conditions. Using this method, two positive bands were stably observed at 300 bp and 130 bp in 33 batches of Panax ginseng samples tested, while negative results were obtained for another 101 batches of samples, including Panax quinquefolium, Panax notoginseng, adulterants, and other medicinal herbs. Thus, we successfully developed a PCR-based method for rapid and effective identification of Panax ginseng, which can be effectively used for the protection and utilization of germplasm resources and identification of the origins of Panax ginseng samples.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB922104 and 2011CBA00202the National Natural Science Foundation of China under Grant No 11474154+4 种基金the Natural Science Foundation of Jiangsu Province under Grant No BK2012013the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120091110030the Dengfeng Project B of Nanjing UniversityJiangsu Key Laboratory of Advanced Manipulating Techniques of Electromagnetic Wavesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In a double-well system, we investigate theoretically the population distribution of a particle perturbed by a weak sinusoidal signal with a Gaussian white noise accompanied. Our numerical simulation shows that the probability of the particle staying in the right potential well, Pn, exhibits an extreme value at specific noise intensity D depending on the frequency of the sinusoidal signal, which is a key feature of stochastic resonance. This is confirmed by calculating the power spectrum of the output signal, in which the extreme value of the amplitude locates at the same noise intensity. These results provide us with a new way to quantify the stochastic resonance by measuring the population distribution of the particle.
基金The work was supported by the National Nature Science Foundation of China No.19789503.
文摘Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re-sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.
基金supported by the National Natural Science Foundation of China(61971420)the Beijing Brain Initiative of the Beijing Municipal Science and Technology Commission(Z181100001518003)+1 种基金Special Projects of Brain Science of the Beijing Municipal Science and Technology Commission(Z161100000216139 and Z171100000117002)the International Cooperation and Exchange of the National Natural Science Foundation of China(31620103905)。
文摘Dear Editor,The brain experiences ongoing changes across different ages to support brain development and functional reorganization.During the span of adulthood,although the brain has matured from a neurobiological perspective,it is still continuously shaped by external factors such as habits,the family setting,socioeconomic status,and the work environment [1].In contrast to chronological age (CA),brain(or biological) age (BA) is conceptualized as an important index for characterizing the aging process and neuropsychological state,as well as individual cognitiveperformance.Growing evidence indicates that BA can be assessed by neuroimaging techniques,including MRI [2].
基金funded by SAGARPA-CONACYT-2006-01-12147 to IDLABSCBS-UAMI-2007-2010-147.07.03 to IDLABS and JLAF
文摘The growth performance of a selected F1 rainbow trout genetically characterized as polymorphic with locus Omy207UoG (NA = 13, PIC = 0.891, HE = 0.9003) was evaluated in a recirculating aquaculture system (RAS). A set of 157 rainbow trout of 37.8 g of mean body weight and 14.6 cm mean total length per tank, were introduced in each of six fish tank of 5 m3 connected to a recirculating aquaculture system (RAS). The trout was rearing during 317 days. Growth performance indicators and water quality were evaluated during the experiment. The genetically selected F1 rainbow trout showed a tendency towards homogeneity in growth performance along the culture period, reaching a mean total weight of 552.2 g. The length-weight relationship indicated an isometric growth (>3.0). This study presents the basis to establish a long-term marker-assisted selection program for rainbow trout culture in a subtropical region.
文摘The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts(CTGs)obtained at different locations and depths in the human palate.Sixty-four CTGs belonging to anterior deep(AD),anterior superficial(AS),posterior deep(PD),and posterior superficial(PS)groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally.Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts(HPFs)extracted from the CTGs.A clearly more pronounced location-dependent than depth-dependent difference between the grafts,with a minimal number of genes(4)showing no dependence on the location,was revealed.Epithelial,endothelial,and monocytic cell migration was strongly(P<0.001)potentiated by AD-and PS-HPFs.Moreover,significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly(P<0.01)activated p38 signaling suggested immunomodulatory phenotype for AD-and PS-HPFs.Increased growth factor gene expression and significantly activated(P<0.001)Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival,proliferation,and motility.Prominent collagen-rich expression profile contributing to high mechanical stability,increased osteogenesis-related gene expression,and strongly activated(P<0.001)Smad1/5/8 signaling characterized HPFs originating from P-CTGs.The present data indicate that in humans,differences between palatal CTGs harvested from different locations and depths appear to be location-rather than depth-dependent.Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.
文摘The authors have retracted this article.After publication we found an error in the implementation code that resulted in data leakage in the age-prediction model training process.We have redesigned the prediction model and tested the mode with an extended dataset(around 2000 subjects,in contrast to the 600 subjects in this article).
基金supported by the Fundamental Research Funds for the Central Universities,China
文摘The selection of circuit model(i.e., parallel or series model) is critical when using a capacitance–frequency and capacitance–voltage technique to probe properties of organic materials and physical processes of organic optoelectronic devices. In the present work, capacitances of ITO/Alq3/Al and ITO/CuPc/Al are characterized by series and parallel model,respectively. It is found that the large series resistance comes from the ITO electrode and results in the inapplicability of the parallel model to measuring the capacitances of organic devices at high frequencies. An equivalent circuit model with consideration of the parasitical inductance of cables is constructed to derive the capacitance, and actual capacitance–frequency spectra of Alq3 and CuPc devices are obtained. Further investigation of temperature-dependent capacitance–frequency and capacitance–voltage characteristics indicates that CuPc and Al form the Schottky contact, the density and ionization energy of impurities in CuPc are obtained. Moreover, more practical guidelines for accurate capacitance measurement are introduced instead of the impedance magnitude, which will be very helpful for the organic community to investigate capacitance-related characteristics when dealing with various organic optoelectronic devices.
文摘Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.
文摘One of the big problems of the urban centres of the cities in Brazil is the growth of the generation of the Civil Construction Waste (CCW). A disturbing concern for the public and private sectors is to find proper disposal of Urban Solid Waste (USW) in large cities, since suitable dumping sites for this waste are increasingly scarce due to the spread and development of large urban centres. In general, recycling is currently one of the procedures most studied by researchers for disposal of such waste. In this context and aiming a new application for recycled CCW aggregates, the research characterized the physical properties of the material to use in fill compaction piles in soil improvement. The analysis shows results from laboratorial tests executed in CCW recycled samples, which came from works in different construction stages from Recife-PE, and natural aggregate, adopted as a reference. Characterization tests were performed with samples CCW recycled CLue aggregates and samples of natural fine aggregate (stone powder). The results of characterization tests showed similarities between the CCW samples tested and the reference samples, indicating that the civil construction wastes has potcntial use as material for consolidation piles in foundation works.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60774053 and 60374044)
文摘Diaphragm structures with micron scale play a significant role in microtransducers and micro-nano devices, and the performance of these devices depends mainly on the dynamic behaviour of diaphragms. Micro-diaphragms are treated commonly as membranes and in some cases as plates or plates in tension (called TD plates for short), but they also show in many cases the behaviour of plates in tension and supported by air spring (called TDK plates for short). Therefore, it is necessary to perform systematic research on the dynamic behaviour of micro-diaphragms, and establish a characterized mathematical description. This paper focuses on the TDK plates since they possess universality, gives the corresponding basic equations, and then derives analytical solutions of TDK circular plates under clamped and simply supported boundary conditions. This paper also gives a 3D plot representation of characteristic curved surfaces, revealing the transition from the TDK and TD plate to the pure plate or pure membrane behaviour; and further uses the value φ to determine the property of diaphragms. Its two extreme cases, i.e. φ = 0 and φ = ∞ , correspond to pure plate or pure membrane, respectively. Thus, membrane, plate and TD plate can be treated as special cases of TDK plate. In addition, this paper reveals that the presence of air-spring not only enhances the restoring force of diaphragm such that increases its natural frequencies, but also results in the resonance of a dynamic system consisting of diaphragm and air-spring. These analytical and computational results are significant for the understanding of the operation mechanism of capacitive microtransducers and their optimized design.
基金Supported by the National Key Research and Development Program of Traditional Chinese Medicine Modernization Project,China(No.2023YFC3504000)the Science and Technology Development Project of Jilin Province,China(No.20240404043ZP)the Science and Technology Innovation Cooperation Project of Changchun Science and Technology Bureau and Chinese Academy of Sciences,China(No.23SH14)。
文摘In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs.
文摘Small things can show a person's true character Find lt What was the weather like when the girl came to the castle door?nce upon a time,there was a prince.He wanted to marry a real princess.He traveled all around the world looking for one.
文摘The effects of development states on the artemisinin content of clone S1 of Artemisia anuua L. grown in a greenhouse were investigated in the present study. The artemisinin content increased gradually during the phase of vegetative growth and reached its highest level at 8-9 mg/g dry weight (DW) when the S1 was 6 months old on a long day (LD) photoperiod. Treatment with 9-18 d of short day (SD) photoperiod resulted in the artemisinin content reaching and being maintained at a higher level (2.059-2.289 mg/g DW), twofold that of control plants and plants of S1 presented at the pro-flower budding and flower-budding stages. The artemisinin content varied in different parts of the plant. The artemisinin content of leaves was higher than that of florets and branches. The artemisinin content in middle leaves was higher than that of bottom leaves, and then top leaves. Different densities of capitate glands (the storage organ of artemisinin) located on the surface of leaves, florets, and branches explained the variations in artemisinin content in these parts of the plant. The correlation coefficient between artemisinin content and density of capitate glands on the surface of different organs was 0.987. The genetic marker for artemisinin content was screened using random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) techniques. The random primer OPAl5 (5'-TTCCGAACCC-3') could amplify a specific band of approximately 1 000 bp that was present in all high-artemisinin yielding strains, but absent in all low-yielding strains in three independent replications. This specific band was cloned and its sequence was analyzed. This RAPD marker was converted into a SCAR marker to obtain a more stable marker.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金the Natural Science Foundation of Shanghai(No.25ZR1401102)China Scholarship Council(CSC)ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(No.YBNLTS2025-024).
文摘Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial phenomena such as zinc dendrite growth,parasitic side reactions,and the evolution of the solid electrolyte interphase.These processes are inherently dynamic and span multiple spatial and temporal scales,posing challenges to traditional ex situ characterization techniques.To address this,advanced in situ and operando techniques have been developed,broadly categorized into imaging,spectroscopic,synchrotron scattering/diffraction,and coupled mass spectrometry approaches.These methods enable real-time visualization and chemical analysis of the electrode/electrolyte interface,providing insights into nucleation and dissolution dynamics,interfacial chemical transformations,and the mechanisms driving dendrite formation and parasitic reactions.Through the integration of these complementary techniques,structural evolution can be correlated with electrochemical behavior,elucidating the underlying physicochemical mechanisms.This review systematically summarizes recent advances in in situ and operando characterization methods and highlights their contributions to understanding interfacial stability in aqueous ZIBs.Future directions emphasizing multi-modal strategies and data integration to guide the rational design of high-performance ZIBs are discussed.These insights are expected to accelerate the development of next-generation aqueous energy storage systems.
基金the fundamental Research Funds for the central Universities(x2wjD2240360)for the funding supportMeanwhile,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/3)+2 种基金UK Research and Innovation(UKRI)under the UK government’s Horizon Europe funding(101077226,EP/Y008707/1)Faraday Institution(EP/S003053/1)Degradation project(FIRG001),Royal Society(IEC\NSFC\233361),QUB Agility Fund and Wright Technology and Research Centre(W-Tech,R5240MEE)Funding from UK aid from the UK Government through the Faraday Institution and the Transforming Energy Access Programme(Grant number FIRG050-Device engineering of Zn-based hybrid micro-flow batteries and by-product H2 collection for Emerging Economies)。
文摘Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.
基金financially supported by the National Key R&D Program of China(No.2024YFF0506300)National Natural Science Foundation of China(No.52336009)+5 种基金Key Research and Development Program of Shaanxi(No.2024CY2-GJHX-66)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010429)Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBQN-0475)Xidian University Specially Funded Project for Interdisciplinary Exploration(No.TZJH2024063)the Fundamental Research Funds for the Central Universities(No.QTZX23061)the Innovation Center of Nuclear Power Technology(No.HDLCXZX-2022-ZH-013).
文摘Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy conversion efficiency.In certain application scenarios,the use of N_(2)O(a potent greenhouse gas),as an alternative oxidant to air,presents a feasible strategy.Herein,we report for the first time the operation of PCFCs employing N_(2)O as the oxidant.A hybrid Pr_(2)Ni_(0.6)Co_(0.4)O_(4-δ)(PNCO-214)catalyst is developed,comprising Ruddlesden-Popper(R-P)structured Pr_(4)Ni_(1.8)Co_(1.2)O_(10-δ)(PNCO-4310)and fluorite structured Pr_(6)O_(11)(PO-611),which synergistically exhibits exceptional catalytic activity toward both N_(2)O decomposition and the oxygen reduction reaction,achieving a conversion over 92% and an area specific resistance of 1.301Ω·cm^(2) at 600℃.Quasi-insitu temperature-dependent Fourier transform infrared(FTIR)and electrochemical impedance spectroscopy analyses reveal that abundant oxygen vacancies in PNCO-214 facilitate rapid adsorption and dissociation of N_(2)O into N_(2) and O_(2),while also promoting the surface exchange kinetics of proton/oxygen during oxygen reduction reaction(ORR).When applied in an anode-supported single cell with PNCO-214 cathode operating under N_(2)O,outstanding power density and low resistance are achieved,delivering 0.801 W·cm^(-2) and 0.245Ω·cm^(2) at 600℃.Satisfactory performance is also maintained even when the temperature is reduced to 500℃.Furthermore,the single cell demonstrates relatively good stability with negligible degradation over 130 h at 600℃ and 0.7 V.These findings underscore the potential of PNCO-214 as a highly effective cathode catalyst for enabling the use of N_(2)O as a viable oxidant in PCFCs for specific industrial applications.