Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stre...The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.展开更多
Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and ref...Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and reflection of light rays are integrated into searching process of optimization. In this algorithm, coordinate space is assumed to be the space that is full of media with different refractivities, then the space is divided by grids, and finally the searching path is assumed to be the propagation path of light rays. With the law of refraction, the search direction is deflected to the direction that makes the value of objective function decrease. With the law of reflection, the search direction is changed, which makes the search continue when it cannot keep going with refraction. Only the function values of objective problems are used and there is no artificial rule in light ray optimization, so it is simple and easy to realize. Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.展开更多
在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位...在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位性能会明显下降。因为在非视距情况,尤其是密集城区,由于建筑物等障碍物的存在使得无线电信号无法直线传播,这就引入了NLOS误差;而CHAN算法中的加权矩阵只考虑了系统误差,无法消除NLOS误差。文中在基于视距环境下CHAN算法的研究基础上,对非视距引入的NLOS误差的统计特性进行分析,给出一种在NLOS情况下,通过优化非视距TDOA测量值误差的方法来改善非视距下的CHAN算法性能,并通过仿真分析了CHAN算法在不同环境模型下的定位性能。仿真结果表明,改善的CHAN算法在NLOS环境下能取得较好的定位性能。展开更多
Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be g...Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have us...The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.展开更多
The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existi...The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.展开更多
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t...The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965,...The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (1D QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, 1D and 2D QDFT have time complexity O(v/N) and O(N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.展开更多
In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of react...In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.展开更多
In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated wit...In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone a...We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.
基金jointly supported by the Fundamental Research Funds for the Central Universities(Grant No.xzy012023075)the Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(Grant No.IUI2023-YB-12).
文摘The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.
基金Supported by Natural Science Foundation of Heilongjiang Province of China (Grant No. F200931)
文摘Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and reflection of light rays are integrated into searching process of optimization. In this algorithm, coordinate space is assumed to be the space that is full of media with different refractivities, then the space is divided by grids, and finally the searching path is assumed to be the propagation path of light rays. With the law of refraction, the search direction is deflected to the direction that makes the value of objective function decrease. With the law of reflection, the search direction is changed, which makes the search continue when it cannot keep going with refraction. Only the function values of objective problems are used and there is no artificial rule in light ray optimization, so it is simple and easy to realize. Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective.
文摘在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位性能会明显下降。因为在非视距情况,尤其是密集城区,由于建筑物等障碍物的存在使得无线电信号无法直线传播,这就引入了NLOS误差;而CHAN算法中的加权矩阵只考虑了系统误差,无法消除NLOS误差。文中在基于视距环境下CHAN算法的研究基础上,对非视距引入的NLOS误差的统计特性进行分析,给出一种在NLOS情况下,通过优化非视距TDOA测量值误差的方法来改善非视距下的CHAN算法性能,并通过仿真分析了CHAN算法在不同环境模型下的定位性能。仿真结果表明,改善的CHAN算法在NLOS环境下能取得较好的定位性能。
基金State Natural Science Foundation (49874021).Contribution No. 01FE2002, Institute of Geophysics, China Seismological Bureau.
文摘Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences—Climate Change:Carbon Budget and Relevant Issues(No.XDA05020200)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(NUIST),China(No.2016r036)the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Provincial Department of Education,China(No.2017103000165)
文摘The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)Postgraduate Innovation Fund Project of Education Department of Jiangxi Province(YC2021-S306)。
文摘The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.
文摘The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
基金supported by Sichuan Normal University,China (Grant No 06lk002)
文摘The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (1D QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, 1D and 2D QDFT have time complexity O(v/N) and O(N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.
文摘In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.
基金supported by Zhejiang Provincial Key Laboratory of Communication Networks and Applications and National Natural Science Foundation of China under Grant No.60872020
文摘In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
文摘We study the single projection algorithm of Tseng for solving a variational inequality problem in a 2-uniformly convex Banach space.The underline cost function of the variational inequality is assumed to be monotone and Lipschitz continuous.A weak convergence result is obtained under reasonable assumptions on the variable step-sizes.We also give the strong convergence result for when the underline cost function is strongly monotone and Lipchitz continuous.For this strong convergence case,the proposed method does not require prior knowledge of the modulus of strong monotonicity and the Lipschitz constant of the cost function as input parameters,rather,the variable step-sizes are diminishing and non-summable.The asymptotic estimate of the convergence rate for the strong convergence case is also given.For completeness,we give another strong convergence result using the idea of Halpern iteration when the cost function is monotone and Lipschitz continuous and the variable step-sizes are bounded by the inverse of the Lipschitz constant of the cost function.Finally,we give an example of a contact problem where our proposed method can be applied.