Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and N...Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.展开更多
The La2O3/Fe2O3-CeO2 composite oxide catalysts were prepared by coprecipitation method, sol-gel method and hydrothermal method. The effect of preparation methods on structure morphology and photocatalytic properties o...The La2O3/Fe2O3-CeO2 composite oxide catalysts were prepared by coprecipitation method, sol-gel method and hydrothermal method. The effect of preparation methods on structure morphology and photocatalytic properties of La2O3/Fe2O3-CeO2 samples was investigated. The results show that the cubic CeO2 structure can be obtained at 600℃. The rod-shaped sample prepared by coprecipitation method, displays the highest crystalline and the strongest diffraction peak intensity. The spherical sample is acquired from sol-gel method, while the small granular sample prepared by hydrothermal method tends to aggregate. The maximum specific surface area of the sample prepared by coprecipitation method is 76.21 m2/g, the minimum specific area of the sample from sol-gel method is 32.66 m2/g and the maximum pore size is 13.84 nm, while the minimum pore volume and pore size of the sample by hydrothermal method are 0.038 cm3/g and 3.95 nm respectively. The band gap energy of catalyst samples is in the following order: sample-CP < sample-SG < sample-HT. The sample obtained by coprecipitation method has the best catalytic degradation performance for methylene blue. Under the excitation of visible light, the degradation rate was 99.58% at 50 minutes, which was higher than those of sol-gel method and hydrothermal method by 5.58% and 9.54% respectively. The catalytic degradation reaction is a first-order kinetic model: ln (c0/ct) = kt + qe. The maximum k-value of the sample degradation process obtained by coprecipitation method is 0.074 min-1.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage ...CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were inves...To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.展开更多
SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco...SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.展开更多
Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron sp...Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts.展开更多
MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after th...MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.展开更多
The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process...Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.展开更多
基金supported by the National Natural Science Foundation of China (No. 20773090, 20803049)the National High Technology Researchand Development Program of China (863 Program, No. 2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education(20070610026)
文摘Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.
文摘The La2O3/Fe2O3-CeO2 composite oxide catalysts were prepared by coprecipitation method, sol-gel method and hydrothermal method. The effect of preparation methods on structure morphology and photocatalytic properties of La2O3/Fe2O3-CeO2 samples was investigated. The results show that the cubic CeO2 structure can be obtained at 600℃. The rod-shaped sample prepared by coprecipitation method, displays the highest crystalline and the strongest diffraction peak intensity. The spherical sample is acquired from sol-gel method, while the small granular sample prepared by hydrothermal method tends to aggregate. The maximum specific surface area of the sample prepared by coprecipitation method is 76.21 m2/g, the minimum specific area of the sample from sol-gel method is 32.66 m2/g and the maximum pore size is 13.84 nm, while the minimum pore volume and pore size of the sample by hydrothermal method are 0.038 cm3/g and 3.95 nm respectively. The band gap energy of catalyst samples is in the following order: sample-CP < sample-SG < sample-HT. The sample obtained by coprecipitation method has the best catalytic degradation performance for methylene blue. Under the excitation of visible light, the degradation rate was 99.58% at 50 minutes, which was higher than those of sol-gel method and hydrothermal method by 5.58% and 9.54% respectively. The catalytic degradation reaction is a first-order kinetic model: ln (c0/ct) = kt + qe. The maximum k-value of the sample degradation process obtained by coprecipitation method is 0.074 min-1.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金National Natural Science Foundation of China(20976120)the Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
文摘To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.
基金National Natural Science Foundation of China (50372037)Scientific Research Foundations of Shaanxi University of Science and Technology (SUST-B14)
文摘SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.
基金Project supported by State Key Fundamental Research Project(G1999022400)
文摘Nickel catalysts supported on CeO2-ZrO2-CeO2,ZrO2-Al2O3 and Al2O3 were prepared and characterized by means of X-ray diffraction(XRD),BET areas,H2 temperature-programmed reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).Through the test of catalytic partial oxidation of methane(CPOM),Ni/CeO2-ZrO2-Al2O3 displayed the highest activity,which resulted from its largest BET area and best NiO dispersion.Furthermore,Ni/CeO2-ZrO2-Al2O3 maintained a long-time stability in CPOM,which was attributed to its best coking resistance among all the prepared catalysts.
基金Project supported by National Natural Science Foundation of China (51072096)National Program on Key Basic Research Project (973 program)(2010CB732304)
文摘MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.
文摘Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.