Ce0.65Zr0.35O2 solid solution was prepared by co-precipitation method and characterized by X-ray diffraction (XRD), Raman spectra, BET, oxygen storage capacity (OSC) and temperature-programmed reduction measurements (...Ce0.65Zr0.35O2 solid solution was prepared by co-precipitation method and characterized by X-ray diffraction (XRD), Raman spectra, BET, oxygen storage capacity (OSC) and temperature-programmed reduction measurements (H2-TPR) after calcination at 100 ℃, 300 ℃, 600 ℃, and 1 000 ℃. The results showed that the precipitation was a crystalline of fluorite structure, and in the process of the precipitation transformation into Ce0.65Zr0.35O2 solid solution, the fluorite structure of the precipitation kept unchanged. The samples had different BET surface areas and OSC at different temperatures, but they held the performance of stable structure. After 1 000 ℃, there didn′t appear the other crystalline phase. So the samples prepared by co-precipitation method had excellent texture and higher thermal stability.展开更多
A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and character...A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.展开更多
Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). Thi...Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.展开更多
The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(...The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.展开更多
The effect of H2O2 on the properties of Ce0.65Zr0.35O2 a mixed aqueous solution of ammonia and was explored by treating cerium nitrate and zirconium nitrate with in the presence/absence of H2O2. The resultant products...The effect of H2O2 on the properties of Ce0.65Zr0.35O2 a mixed aqueous solution of ammonia and was explored by treating cerium nitrate and zirconium nitrate with in the presence/absence of H2O2. The resultant products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption, oxygen storage capacity (OSC) and H2- reduction (H2-TPR). The presence of H2O2 was found to have profound effect on powder properties such as surface area, crystallite size of the samples. It was also shown that the addition of H2O2 favored the incorporation of Zr4+ into CeO2 lattice, which facilitated the formation of CeO2-ZrO2 solid solution, and enhanced the thermal stability of the samples. OSC and H2-TPR studies indicated that the use of H2O2 enhanced the OSC and redox properties. Catalytic activity tests showed that as a support, the Ce0.65Zr0.35O2 prepared in the presence of H2O2 was more suitable for three-way catalyst. The corresponding Pd-only three-way catalyst demonstrated outstanding performance: wide air to fuel operation window, low light-off and total conversion temperature for the conversion of C3H8, NO and CO.展开更多
Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis tempera...Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.展开更多
文摘Ce0.65Zr0.35O2 solid solution was prepared by co-precipitation method and characterized by X-ray diffraction (XRD), Raman spectra, BET, oxygen storage capacity (OSC) and temperature-programmed reduction measurements (H2-TPR) after calcination at 100 ℃, 300 ℃, 600 ℃, and 1 000 ℃. The results showed that the precipitation was a crystalline of fluorite structure, and in the process of the precipitation transformation into Ce0.65Zr0.35O2 solid solution, the fluorite structure of the precipitation kept unchanged. The samples had different BET surface areas and OSC at different temperatures, but they held the performance of stable structure. After 1 000 ℃, there didn′t appear the other crystalline phase. So the samples prepared by co-precipitation method had excellent texture and higher thermal stability.
基金Project supported by National Natural Science Foundation of China(51374004,51204083,51174105,51104074)Natural Science Foundation of Yunnan Province(2010ZC018)
文摘A series of Ceo.sFeo.30Zr0.20O2 catalysts were prepared by different methods (co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrotherrnal method) and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation (TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incor- porated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases ex- isted in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.202 catalyst presented the lowest Ti (251℃, ignition temperature of soot oxidation) and Tm (310 ℃, maximum oxidation rate temperature) for soot combustion (with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 ℃ for 10 h, the Ti and Tm were still relatively low, at 273 and 361 ℃, respectively, indicating high catalytic stability.
基金the Post-Doctorial Foundation of China(No.20060400928)the Post-Doctorial Foundation of Jiangsu Province(No.0602001B)
文摘Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.
基金supported by the Introduction of Talent and Technology Cooperation Plan of Tianjin(14RCGFGX00849)
文摘The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.
基金supported by National Natural Science Foundation of China(21173153)Foundation of Science and Technology of Sichuan Province(2011GZ0035)Foundation of Environmental Protection of Sichuan Province(2011HB002)
文摘The effect of H2O2 on the properties of Ce0.65Zr0.35O2 a mixed aqueous solution of ammonia and was explored by treating cerium nitrate and zirconium nitrate with in the presence/absence of H2O2. The resultant products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption, oxygen storage capacity (OSC) and H2- reduction (H2-TPR). The presence of H2O2 was found to have profound effect on powder properties such as surface area, crystallite size of the samples. It was also shown that the addition of H2O2 favored the incorporation of Zr4+ into CeO2 lattice, which facilitated the formation of CeO2-ZrO2 solid solution, and enhanced the thermal stability of the samples. OSC and H2-TPR studies indicated that the use of H2O2 enhanced the OSC and redox properties. Catalytic activity tests showed that as a support, the Ce0.65Zr0.35O2 prepared in the presence of H2O2 was more suitable for three-way catalyst. The corresponding Pd-only three-way catalyst demonstrated outstanding performance: wide air to fuel operation window, low light-off and total conversion temperature for the conversion of C3H8, NO and CO.
基金Project Supported by Open Fund of Key Laboratory of Catalysis Materials and Science of Hubei Province (CHCL0501)
文摘Mesoporous Ce0.5Zr0.5O2 mixed oxide with high specific surface area was synthesized under basic condition in the presence of non-ionic surfactant PEG-4000. The effect of synthesis conditions, such as synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ), on specific surface area were investigated. The products were characterized by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption-desorption measurements, respectively. The results showed that synthesis temperature and the molar ratio of PEG-4000/([ Ce] + [ Zr] ) had great influence on specific surface area. Under the optimum synthesis conditions, the prepared Ce0.5Zr0.5O2 mixed oxide presented cubic fluorite-type structure and possessed high surface area of 148.6 m2·g^-1 with wormlike pores.