Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of th...Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of the joints were investigated.Nanoscale filler reduced the phases dimension and promoted the homogeneous distribution of microstructure,obtaining a higher joint strength when compared to microscale filler.The increase of brazing temperature made the accelerating dissolution and diffusion of Ti,which promoted the increase of thickness of Ti4O7+TiSi2 layer adjacent to SiO2 ceramic and diffusion layer zone nearby TC4 alloy.The hypoeutectic structure was produced in the brazing seam due to the high Ti content.The maximum shear strength of^40 MPa was obtained at 950°C for 10 min.展开更多
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) c...Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.展开更多
Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 ...Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.展开更多
Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects...Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects of SAT microspheres and the gradient-ascent architecture on the light absorption and the photoelectric conversion efficiency(PCE) of the dye-sensitized solar cells(DSSCs) were investigated.Studies indicate that the introduction of SAT microspheres and the gradient-ascent architecture in the photoanode significantly enhance the light scattering and harvesting capability of the photoanode. The DSSC with the optimized SAT gradient-ascent photoanode has the maximum short circuit current density(J_(sc)) of 17.7 mA cm^(-2) and PCE of 7.75%, remarkably higher than those of the conventional DSSC by 23.7%and 28.0%, respectively. This significantly enhancement of the performance of the DSSC can be attributed to the excellent light reflection/scattering of SAT, the localized surface plasma resonance(LSPR) effect of AuNPs within the microspheres, and the gradient-ascent architecture of SAT microspheres inside the photoanode. This study demonstrates that the tri-synergies of the scattering of SAT microspheres, the LSPR of AuNPs and the gradient-ascent architecture can effectively improve the PCE of DSSC.展开更多
Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepar...Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.展开更多
The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis r...The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.展开更多
One of the most important safety features of nuclear facilities is the shielding material used to protect the operating personnel from radiation exposure. The most common materials used in radiation shielding are conc...One of the most important safety features of nuclear facilities is the shielding material used to protect the operating personnel from radiation exposure. The most common materials used in radiation shielding are concretes. In this study, a Monte Carlo N-Particle eXtended code is used to calculate the gamma-ray attenuation coefficients and dose rates for a new concrete material composed of MnFe_2O_4 nanoparticles, which is then compared with the theoretical and experimental results obtained for a SiO_2 nanoparticle concrete material. According to the results, the average relative differences between the simulations and the theoretical and experimental results for the linear attenuation coefficient(l) in the SiO_2 nanoparticle materials are 6.4% and 5.5%, respectively. By increasing the SiO_2 content up to 1.5% and the temperature of MnFe_2O_4 up to 673 K, l is increased for all energies. In addition, the photon dose rate decreases up to 9.2% and3.7% for MnFe_2O_4 and SiO_2 for gamma-ray energies of0.511 and 1.274 MeV, respectively. Therefore, it was concluded that the addition of SiO_2 and MnFe_2O_4 nanoparticles to concrete improves its nuclear properties and could lead to it being more useful in radiation shielding.展开更多
High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nano...High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2.The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+.When the doping amount is 0.1,the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature.In the Zn0.5CoxFe2.5−xO4/SiO2 serial samples,the maximum value of specific loss power(SLP)with 1974 W/gmetal can also be found at doping amount of x=0.1.The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.展开更多
Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission ...Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.展开更多
Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 co...Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51505105,51875130 and 51775138)the Key Research&Development Program of Shandong Province(No.2017GGX40103).
文摘Nano-Al2O3 particles modified Ag Cu Ni filler was adopted to braze the SiO2 ceramic and TC4.The effects of filler size as well as the brazing temperature on the interfacial microstructure and mechanical property of the joints were investigated.Nanoscale filler reduced the phases dimension and promoted the homogeneous distribution of microstructure,obtaining a higher joint strength when compared to microscale filler.The increase of brazing temperature made the accelerating dissolution and diffusion of Ti,which promoted the increase of thickness of Ti4O7+TiSi2 layer adjacent to SiO2 ceramic and diffusion layer zone nearby TC4 alloy.The hypoeutectic structure was produced in the brazing seam due to the high Ti content.The maximum shear strength of^40 MPa was obtained at 950°C for 10 min.
基金Supported by the National Natural Science Foundation of China(20876145) the Natural Science Foundation of Zhejiang Province(Y4080329)
文摘Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.
基金supported by the National Natural Science Foundation of China(Grant No.81273046)the Fundamental Research Funds for the Central Universitiesthe Preventive Medicine Research Projects of Jiangsu Province(Grant No.Y2012039)
文摘Objective The effect of the silica nanoparticles(SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.Methods Male Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25,12.5,and 25.0 mg of SNs or 25.0 mg of microscale SiO_2 particles suspensions for 30 d,were then sacrificed.Histopathological and ultrastructural change in lungs,and chemical components in the urine excretions were investigated by light microscope,TEM and EDS.MDA,NO and hydroxyproline(Hyp) in lung homogenates were quantified by spectrophotometry.Contents of TNF-α,TGF-β1,IL-1β,and MMP-2 in lung tissue were determined by immunohistochemistry staining.Results There is massive excretion of Si substance in urine.The SNs lead pulmonary lesions of rise in lung/body coefficients,lung inflammation,damaged alveoli,granuloma nodules formation,and collagen metabolized perturbation,and lung tissue damage is milder than those of microscale SiO_2 particles.The SNs also cause increase lipid peroxidation and high expression of cytokines.Conclusion The SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines.Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO_2 particles is contributed to its elimination from urine due to their ultrafine particle size.
基金supported financially by the National Natural Science Foundation of China (Nos.51572102,11504101,11604089 and 11364018)
文摘Highly homogeneous, well dispersed SiO_2@Au@TiO_2(SAT) microspheres decorated with Au nanoparticles(AuNPs) were prepared and incorporated into the photoanode with an optimized concentration gradientascent. The effects of SAT microspheres and the gradient-ascent architecture on the light absorption and the photoelectric conversion efficiency(PCE) of the dye-sensitized solar cells(DSSCs) were investigated.Studies indicate that the introduction of SAT microspheres and the gradient-ascent architecture in the photoanode significantly enhance the light scattering and harvesting capability of the photoanode. The DSSC with the optimized SAT gradient-ascent photoanode has the maximum short circuit current density(J_(sc)) of 17.7 mA cm^(-2) and PCE of 7.75%, remarkably higher than those of the conventional DSSC by 23.7%and 28.0%, respectively. This significantly enhancement of the performance of the DSSC can be attributed to the excellent light reflection/scattering of SAT, the localized surface plasma resonance(LSPR) effect of AuNPs within the microspheres, and the gradient-ascent architecture of SAT microspheres inside the photoanode. This study demonstrates that the tri-synergies of the scattering of SAT microspheres, the LSPR of AuNPs and the gradient-ascent architecture can effectively improve the PCE of DSSC.
基金Supported by the National Natural Science Foundation of China(No. 20305007) and Doctoral Foundation of China Ministry ofEducation(No. 20030269014)
文摘Tetrathiafulvalene(TTF) was doped in an SiO2 network and the resulting nanocompesite was used as a mediator for the selective detection of glucose. The uniform TTF-doped silica(TIT@SiO2 ) nanoparticles were prepared by the water-in-oil(W/O) microemulsion method, and were characterized by transmission electron microscopy(TEM). The core-shell structure TTF@ SiO2 could prevent TIT from leaching out into an aqueous solution. Combined with chitosan (CHIT), which serves as a scaffold for glucose oxidase and nanocomposite immobilization, the GCE/TTF@ SiO2- CHIT-GOx biosensor was developed. Under optimal conditions, the biosensors exhibit a linear range of 1.0 × 10^-5 5 × 10^-3 mol/L with a detection limit down to 5.0 μmol/L(S/N = 3 ). The excellent selectivity, sensitivity, and stability of the glucose biosensor show its potential for practical applications.
基金supported by research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE201127)
文摘The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.
文摘One of the most important safety features of nuclear facilities is the shielding material used to protect the operating personnel from radiation exposure. The most common materials used in radiation shielding are concretes. In this study, a Monte Carlo N-Particle eXtended code is used to calculate the gamma-ray attenuation coefficients and dose rates for a new concrete material composed of MnFe_2O_4 nanoparticles, which is then compared with the theoretical and experimental results obtained for a SiO_2 nanoparticle concrete material. According to the results, the average relative differences between the simulations and the theoretical and experimental results for the linear attenuation coefficient(l) in the SiO_2 nanoparticle materials are 6.4% and 5.5%, respectively. By increasing the SiO_2 content up to 1.5% and the temperature of MnFe_2O_4 up to 673 K, l is increased for all energies. In addition, the photon dose rate decreases up to 9.2% and3.7% for MnFe_2O_4 and SiO_2 for gamma-ray energies of0.511 and 1.274 MeV, respectively. Therefore, it was concluded that the addition of SiO_2 and MnFe_2O_4 nanoparticles to concrete improves its nuclear properties and could lead to it being more useful in radiation shielding.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51771124,51571146,and 51701130)。
文摘High quality Zn0.5CoxFe2.5−xO4(x=0,0.05,0.1,0.15)serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method,and Zn0.5CoxFe2.5−xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2.The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+.When the doping amount is 0.1,the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature.In the Zn0.5CoxFe2.5−xO4/SiO2 serial samples,the maximum value of specific loss power(SLP)with 1974 W/gmetal can also be found at doping amount of x=0.1.The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.
基金financially supported by the National Natural Science Foundation of China (No.21364007)the Natural Science Foundation of Inner Mongolia (No.2016MS0201)the Program for Young Talents of Science and Technology of Baotou Teachers College (No.01135003)
文摘Eu3+ doped-CdTe(CdTe:Eu3+)nanocrystals were prepared via a facile hydrothermal method,and Eu3+ was successfully incorporated into the crystal lattice of CdTe and measured by X-ray powder diffraction(XRD),transmission electron microscopy(TEM),ultraviolet-visible(UV-Vis) absorption spectroscopy and fluorescence emission.The CdTe:Eu^3+ nanocrystals still have a cubic crystal structure,and the corresponding XRD peaks of CdTe:Eu3+nanocrystals shift to larger angles compared with those of pure CdTe.The CdTe:Eu3+ nanocrystals are monodisperse and the particles size is about 2-4 nm.Compared with pure CdTe,the CdTe:Eu^3+ nanocrystals have larger band gap and thus exhibit blueshift in the emission spectra,which could be accounted for by the energy transfer between Eu^3+ and CdTe.To enhance the stability and functionality of CdTe:Eu3+nanocrystals,the CdTe:Eu3+nanocrystals were coated with SiO2 and the core-shell SiO2-coated CdTe:Eu3+nanocrystals(CdTe:Eu^3+@SiO2) were prepared via microemulsion method.TEM results show that CdTe:Eu3+nanocrystals are uniformly dispersed in the shell,and CdTe:Eu3+@SiO2 nanospheres are uniformly spherical with an average diameter of about 75 nm.The fluorescence emission of CdTe:Eu3+@SiO2(567 nm) shows a blueshift compared with that of CdTe:Eu^3+nanocrystals(632 nm),possibly because of altered surface properties after SiO2 coating.CdTe:Eu^3+and CdTe:Eu^3+@SiO2 with tunable photoluminescence are potentially useful in fabricating optical and bioimaging devices.
文摘Thioglycolic acid(TGA)-stabilized CdTe nanocrystals(NCs) were prepared with sodium tellurite as tellurium source,which avoids the cumbersome processes associated with H2Te or NaHTe sources.Fluorescent CdTe/SiO2 composites were synthesized by a sol-gel method without the exchange of surface ligands.The phase structure of CdTe NCs was investigated by X-ray diffractometry.For comparison,some characterizations were done for both the CdTe NCs and the composites.CdTe NCs and CdTe/SiO2 composites were characterized with TEM,digital camera and fluorescence spectrophotometer.The stability of CdTe NCs and the composites were investigated in phosphate-buffered saline(PBS) buffer and the fluorescent properties of the composites were discussed in detail.