To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbo...To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbonization temperature was up to 200℃.The optimal laboratory process of infected pine wood charcoal(IPWC)was carbonization temperature of 500℃,heating rate of 3℃min^(−1)and holding time of 0 min.Based on the optimal laboratory process,the transportable carbonization equipment produced IPWC with a fixed carbon content of 79.82%,and ash content of 1.14%and a moisture content of 7.83%,which meets the requirements of EN 1860-2:2005(E)standard.The economic efficiency of incineration(T1 mode),crushing(T2 mode),and transportable carbonization(T3 mode)was evaluated.For each ton of IPW treatment,the profit generated was−75.48 USD in T1 mode,26.28 USD in T2 mode,and 51.91 USD in T3 mode.T3 mode had the highest economic efficiency.These findings will be helpful to provide guidance for the control of PWD and value-added utilization of IPW.展开更多
Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ...Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).展开更多
Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active mate...Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.展开更多
Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration o...Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nan...The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.展开更多
Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This re...Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a signifi...Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.展开更多
Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the co...Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.展开更多
1.Introduction Engineers,policymakers,and governments are currently facing the pressing global challenges of climate change and the energy crisis.To address the continuously increasing demand for energy and mitigate e...1.Introduction Engineers,policymakers,and governments are currently facing the pressing global challenges of climate change and the energy crisis.To address the continuously increasing demand for energy and mitigate environmental damage,energy conservation and emissions reduction have become strategic priorities for sustainable development[1].Nations worldwide have reached a consensus on reducing carbon emissions and have introduced various policies and actions,such as the carbon peak and carbon neutrality targets proposed by China[2,3].展开更多
The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to t...The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to the separation of rare earths and calcium in the solution,as well as the preparation of rare earth oxides with a large specific surface.It is shown that the process of CO_(2)carbonization of solution includes reactions such as the dissolution,diffusion and ionization of CO_(2),the carbonate precipitation of rare earth ions,and the neutralization of hydrogen ions.At a pH of 4.5,the carbonization precipitation rate is effectively controlled,enabling homogeneous precipitation and ensuring both high precipitation yield and rare earth oxides purity.In this way,the crystallization of carbonization products is a process dominated by the oriented attachment theory and coexisting with the Ostwald ripening theory,resulting in abundant pores formed by multiple layers of stacking in the products.With the optimal carbonization conditions,the rare earth precipitation yield solution reaches 99.32%.The obtained carbonization products are crystalline(LaCe)(CO_(3))_(3)·8H_(2)O,and the purity of the rare earth oxides is as high as 99.22 wt%.The specific surface area of the rare earth oxides reaches 94.7 m^(2)/g,and its adsorption efficiency for tetracycline hydrochloride in solution can reach 92.6%in a short time.The rare earth oxides are expected to be used as an adsorption material for wastewater treatment and other adsorption environments.展开更多
The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and the...The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.展开更多
To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hyd...To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hydrogen integrated energy system(EHH-IES)optimal scheduling model considering carbon emission stream(CES)and wind-solar accommodation.First,the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate,branch carbon intensity,and node carbon potential,realizing accurate tracking of carbon flow in the process of multi-energy coupling.Second,a stepped carbon pricing mechanism is established to dynamically adjust carbon trading costs based on the deviation between actual carbon emissions and initial quotas,strengthening the emission reduction incentive.Finally,a lowcarbon economic dispatch model is constructed with the objectives of minimizing operation cost,carbon trading cost,wind-solar curtailment penalty cost,and energy loss.Simulation results show that compared with the traditional economic dispatch scheme 3,the proposed schemel reduces carbon emissions by 53.97%and wind-solar curtailment by 68.89%with a 16.10%increase in total cost.This verifies that the model can effectively improve clean energy utilization and reduce carbon emissions,achieving low-carbon economic operation of EHH-IES,with CES theory ensuring precise carbon flow tracking across multi-energy links.展开更多
Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfac...Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.展开更多
In this context,an enzyme-induced magnesia carbonization(EIMC)method was proposed for practical healing of rock weathering cracks in term of bio-cementing sandstone grains.For this,a series of experiments were conduct...In this context,an enzyme-induced magnesia carbonization(EIMC)method was proposed for practical healing of rock weathering cracks in term of bio-cementing sandstone grains.For this,a series of experiments were conducted on EIMC mortar samples,and the physicomechanical properties were obtained.The effects of urea pre-hydrolysis time,mass ratio of liquid solution to magnesia,and urea concentration were analyzed.Experimental results indicated that the urea pre-hydrolysis based EIMC method had a better cementation ability of sandstone grain and greater crack surface bonding performance of sandstone than the existing microbial-induced magnesia carbonization(MIMC)method.The optimal bio-cementation conditions were of pre-hydrolysis time of 24 h,mass ratio of liquid solution to magnesia of 1.75,and urea concentration of 1 mol/L.Under these conditions,the peak tensile stress of EIMC mortar samples reached up to 948.45 kPa,and interfacial peak tensile stress of EIMC-sandstone samples reached 608.57 kPa.These values were 118.6%(799.97 kPa)and 123.2%(493.19 kPa)of those of samples bio-cemented by the MIMC method,respectively.The improved bio-cementation performance can be attributed to the pre-hydrolysis of urea,ensuring an adequate supply of CO_(3)^(2-) ions and promoting the magnesia hydration and the brucite carbonization.The increased production of hydrated magnesium carbonates,coupled with formation of the amorphous brucite facilitated by biomolecules,established a denser structure,enhancing the physicomechanical properties.Microcrack development near the interfacial zone of mortar and sandstone was an important factor in the reduced biocementation performance of the MIMC method.The EIMC method is a practical bio-healing method for rock weathering cracks due to the availability of urease and its good cementation properties.展开更多
Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading...Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading mechanism while enhancing the low-carbon economic benefits of the integrated energy system(IES)and optimizing the interests of various entities within the distribution system has become a significant challenge.Consequently,this paper proposes an optimization strategy for a low-carbon economy within a multi-agent IES that considers carbon capture systems(CCS)and power-to-gas(P2G).In this framework,the integrated energy system operator(IESO)acts as the primary leader,while energy suppliers(ES),energy storage operators(ESO),and load aggregators(LA)follow.At the level of low-carbon technology,a coupling model of P2G and CCS is developed,leading to the establishment of an IES that incorporates energy conversion and storage equipment.Economically,effective control of system carbon emissions in market trading is progressively established.Lastly,the trading decision model of the system is integrated within a master-slave game framework,utilizing an improved differential evolution algorithm in conjunction with the distributed equilibrium method of quadratic programming for solution.The calculation example demonstrates that the strategy safeguards the benefits for both parties in the game and achieves energy savings and carbon reduction for the system.展开更多
The resource utilization of sludge can effectively achieve the regeneration and utilization of resources,and promote sustainable economic development.Sludge carbonization is a sludge treatment and disposal technology ...The resource utilization of sludge can effectively achieve the regeneration and utilization of resources,and promote sustainable economic development.Sludge carbonization is a sludge treatment and disposal technology with broad application prospects,and its products have shown significant resource potential in land use,fuel utilization,and other fields.At present,China still faces some challenges in the resource utilization of sludge carbonization,such as issues related to heavy metal stability and outdated standards.In the future,it is necessary to further strengthen research,improve the standard system,and promote the widespread application of sludge carbonization technology,so as to achieve the goals of sludge reduction,harmlessness,and resource utilization and support the development of circular economy.展开更多
Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain unc...Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain uncertain in arid mountain ecosystems,where climosequences are quite different from other ecosystems.To address this gap,this study investigated the distribution determinants of microbial communities,C cycling-related genes,and SOC fractions along an elevational gradient(1707–3548 m),with a mean annual precipitation(MAP)range of 38 to 344 mm,on the north slope of the central part of the Kunlun Mountains,China using a metagenomic approach.The results showed that elevation significantly influenced the α-diversity(Shannon index)and composition of microbial communities as well as the C cycling-related genes.The α-diversities of microbial taxa and C cycling-related genes linearly increased with the increase in MAP along the elevational gradient.The elevational patterns of the genes encoding glycoside hydrolases and glycosyl transferases(GTs)were mainly driven by soil electrical conductivity(EC),mean annual temperature(MAT),MAP,and plant diversity.Furthermore,mineral-associated organic C(MAOC),particulate organic C(POC),and their sum generally increased with elevation.However,the MAOC/POC ratio followed a unimodal pattern,suggesting greater stability of the SOC pool in the mid-elevation regions.This unimodal pattern was likely influenced by the abundances of Actinobacteria and the genes encoding GTs and carbohydrate esterases and the threshold effects of soil EC and MAT.In summary,our findings indicate that the distribution patterns of microbial communities and C cycling-related genes along the elevational gradient in an arid ecosystem are distinct from those in the regions with higher MAP,facilitating the prediction of climate change effects on SOC metabolism under more arid conditions.Soil salinity,plant diversity,precipitation,and temperature are the main regulatory factors of microbial C metabolism processes,and they potentially play a central role in mediating SOC pool stability.展开更多
The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and a...The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and ammonia nitrogen pollution.The present study explored the synthesis of crystalline yttrium carbonate in a sodium carbonate system,employing a conventional mother liquor derived from yttrium chloride.The growth of yttrium carbonate was explored through the lens of density functional theory(DFT)calculations,unveiling a novel perspective on its formation mechanism.The synthesized yttrium carbonate demonstrates enhanced crystallinity,with a D50value of 19.75μm achieved under reaction conditions comprising a temperature of 60℃,stirring rate of 200 r/min,feeding rate of 4 mL/min,and aging time of 30 h.The molar ratio for precipitation is set at 1.6:1.The morphology of yttrium carbonate undergoes a transition from needle-like structures to sheet-like formations,ultimately culminating in the formation of spherical aggregates.The variation in surface energy among distinct crystal planes and CO_(3)^(2-)configurations within crystal cells accounts for this phenomenon.The DFT calculations unveil a progression of growth and trans formation in yttrium carbonate,commencing from a one-dimensional configuration and culminating in a multidimensional morphology.展开更多
基金supported by the"National Natural Science Foundation of China"(Grant numbers 31971742)"Basic Scientific Research Funds of International Centre"(1632023003).
文摘To prevent the spread of pine wilt disease(PWD),a transportable carbonization equipment was designed for in-situ treatment of infected pine wood(IPW).The equipment killed all pine wood nematodes(PWNs)in IPW when carbonization temperature was up to 200℃.The optimal laboratory process of infected pine wood charcoal(IPWC)was carbonization temperature of 500℃,heating rate of 3℃min^(−1)and holding time of 0 min.Based on the optimal laboratory process,the transportable carbonization equipment produced IPWC with a fixed carbon content of 79.82%,and ash content of 1.14%and a moisture content of 7.83%,which meets the requirements of EN 1860-2:2005(E)standard.The economic efficiency of incineration(T1 mode),crushing(T2 mode),and transportable carbonization(T3 mode)was evaluated.For each ton of IPW treatment,the profit generated was−75.48 USD in T1 mode,26.28 USD in T2 mode,and 51.91 USD in T3 mode.T3 mode had the highest economic efficiency.These findings will be helpful to provide guidance for the control of PWD and value-added utilization of IPW.
文摘Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708)partly supported by the GRRC program of Gyeonggi province(GRRCKyungHee2023-B03).
文摘Herein,we report a simple self-charging hybrid power system(SCHPS)based on binder-free zinc copper selenide nanostructures(ZnCuSe_(2) NSs)deposited carbon fabric(CF)(i.e.,ZnCuSe_(2)/CF),which is used as an active material in the fabrication of supercapacitor(SC)and triboelectric nanogenerator(TENG).At first,a binder-free ZnCuSe_(2)/CF was synthesized via a simple and facial hydrothermal synthesis approach,and the electrochemical properties of the obtained ZnCuSe_(2)/CF were evaluated by fabricating a symmetric quasi-solid-state SC(SQSSC).The ZCS-2(Zn:Cu ratio of 2:1)material deposited CF-based SQSSC exhibited good electrochemical properties,and the obtained maximum energy and power densities were 7.5 Wh kg^(-1)and 683.3 W kg^(-1),respectively with 97.6%capacitance retention after 30,000 cycles.Furthermore,the ZnCuSe_(2)/CF was coated with silicone rubber elastomer using a doctor blade technique,which is used as a negative triboelectric material in the fabrication of the multiple TENG(M-TENG).The fabricated M-TENG exhibited excellent electrical output performance,and the robustness and mechanical stability of the device were studied systematically.The practicality and applicability of the proposed M-TENG and SQSSC were systematically investigated by powering various low-power portable electronic components.Finally,the SQSSC was combined with the M-TENG to construct a SCHPS.The fabricated SCHPS provides a feasible solution for sustainable power supply,and it shows great potential in self-powered portable electronic device applications.
基金supported by the National Natural Science Foundation of China(No.52130702,No.52177093)。
文摘Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
文摘The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.
文摘Carbon dots(CDs)are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries,owing to their ultrasmall size,tunable surface functional groups and excellent dispersibility.This review summarizes recent advances in CD-based materials for advanced batteries.Methods for the preparation of CDs are first introduced,focusing on the feasibility of large-scale synthesis,and four critical uses of CDs are analyzed:electrolyte solutions,metal electrode coatings,electrode materials,and solid-state batteries.We then consider how CDs suppress dendrite formation,decrease volume expansion,accelerate charge transfer,and improve ion migration.Finally,existing problems are discussed,including the industrial production of CDs,their role as additives in the evolution of electrode interfaces,and strategies for giving them multifunctionality.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
文摘Agroforestry systems,as composite ecosystems,possess dual characteristics of both forest and agricultural ecosystems.They have been widely recognized as an important land-use approach in agriculture and play a significant role in changing the climate.However,they also face limitations,including uncertainties related to future global climate change,land use,and land cover.This paper summarized the important role of agroforestry systems in the global carbon cycle and carbon balance from the methods and means used in the research on carbon storage and carbon balance and the research status of carbon storage and carbon balance in agroforestry ecosystems at home and abroad,and pointed out the problems that need to be paid attention to in future research.
基金funding support from Taishan Scholars Program of Shandong Province(tsqn201909132)National Natural Science Foundation of China(22208183)+1 种基金Startup Foundation from Qingdao Agricultural University(663-1120040,665-1119020)Technology development project from Jinan Shengquan Company(20233702031771)。
文摘Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.
基金supported by the National Natural Science Foundation of China(62293500,62293502,and 62293504)the State Key Laboratory of Industrial Control Technology,China(ICT2024A22)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017).
文摘1.Introduction Engineers,policymakers,and governments are currently facing the pressing global challenges of climate change and the energy crisis.To address the continuously increasing demand for energy and mitigate environmental damage,energy conservation and emissions reduction have become strategic priorities for sustainable development[1].Nations worldwide have reached a consensus on reducing carbon emissions and have introduced various policies and actions,such as the carbon peak and carbon neutrality targets proposed by China[2,3].
基金Project supported by the National Key Research and Development Project of China(2022YFC2905202)Natural Science Foundation of Jiangxi Province(20232ACB204014)Youth Jinggang Scholars Program in Jiangxi Province(QNJG2019056)。
文摘The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to the separation of rare earths and calcium in the solution,as well as the preparation of rare earth oxides with a large specific surface.It is shown that the process of CO_(2)carbonization of solution includes reactions such as the dissolution,diffusion and ionization of CO_(2),the carbonate precipitation of rare earth ions,and the neutralization of hydrogen ions.At a pH of 4.5,the carbonization precipitation rate is effectively controlled,enabling homogeneous precipitation and ensuring both high precipitation yield and rare earth oxides purity.In this way,the crystallization of carbonization products is a process dominated by the oriented attachment theory and coexisting with the Ostwald ripening theory,resulting in abundant pores formed by multiple layers of stacking in the products.With the optimal carbonization conditions,the rare earth precipitation yield solution reaches 99.32%.The obtained carbonization products are crystalline(LaCe)(CO_(3))_(3)·8H_(2)O,and the purity of the rare earth oxides is as high as 99.22 wt%.The specific surface area of the rare earth oxides reaches 94.7 m^(2)/g,and its adsorption efficiency for tetracycline hydrochloride in solution can reach 92.6%in a short time.The rare earth oxides are expected to be used as an adsorption material for wastewater treatment and other adsorption environments.
文摘The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.
文摘To address the issues of unclear carbon responsibility attribution,insufficient renewable energy absorption,and simplistic carbon trading mechanisms in integrated energy systems,this paper proposes an electricheat-hydrogen integrated energy system(EHH-IES)optimal scheduling model considering carbon emission stream(CES)and wind-solar accommodation.First,the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate,branch carbon intensity,and node carbon potential,realizing accurate tracking of carbon flow in the process of multi-energy coupling.Second,a stepped carbon pricing mechanism is established to dynamically adjust carbon trading costs based on the deviation between actual carbon emissions and initial quotas,strengthening the emission reduction incentive.Finally,a lowcarbon economic dispatch model is constructed with the objectives of minimizing operation cost,carbon trading cost,wind-solar curtailment penalty cost,and energy loss.Simulation results show that compared with the traditional economic dispatch scheme 3,the proposed schemel reduces carbon emissions by 53.97%and wind-solar curtailment by 68.89%with a 16.10%increase in total cost.This verifies that the model can effectively improve clean energy utilization and reduce carbon emissions,achieving low-carbon economic operation of EHH-IES,with CES theory ensuring precise carbon flow tracking across multi-energy links.
基金supported by the National Natural Science Foundation of China(Nos.82160153,21505162,22074005,and 22101027)Natural Science Foundation of Hunan Province,China(No.2022SK2102)+1 种基金Hunan Provincial Department of Education Scientific Research Project(No.240994)the Natural Science Foundation of Beijing Municipality(No.2202038).
文摘Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.
基金supported by the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering,China University of Mining&Technology/China University of Mining&Technology,Beijing(Grant No.SKLGDUEK2214)the National Natural Science Foundation of China(Grant No.42477188)National Key Research and Development Program of China(Grant No.2023YFC3007102).
文摘In this context,an enzyme-induced magnesia carbonization(EIMC)method was proposed for practical healing of rock weathering cracks in term of bio-cementing sandstone grains.For this,a series of experiments were conducted on EIMC mortar samples,and the physicomechanical properties were obtained.The effects of urea pre-hydrolysis time,mass ratio of liquid solution to magnesia,and urea concentration were analyzed.Experimental results indicated that the urea pre-hydrolysis based EIMC method had a better cementation ability of sandstone grain and greater crack surface bonding performance of sandstone than the existing microbial-induced magnesia carbonization(MIMC)method.The optimal bio-cementation conditions were of pre-hydrolysis time of 24 h,mass ratio of liquid solution to magnesia of 1.75,and urea concentration of 1 mol/L.Under these conditions,the peak tensile stress of EIMC mortar samples reached up to 948.45 kPa,and interfacial peak tensile stress of EIMC-sandstone samples reached 608.57 kPa.These values were 118.6%(799.97 kPa)and 123.2%(493.19 kPa)of those of samples bio-cemented by the MIMC method,respectively.The improved bio-cementation performance can be attributed to the pre-hydrolysis of urea,ensuring an adequate supply of CO_(3)^(2-) ions and promoting the magnesia hydration and the brucite carbonization.The increased production of hydrated magnesium carbonates,coupled with formation of the amorphous brucite facilitated by biomolecules,established a denser structure,enhancing the physicomechanical properties.Microcrack development near the interfacial zone of mortar and sandstone was an important factor in the reduced biocementation performance of the MIMC method.The EIMC method is a practical bio-healing method for rock weathering cracks due to the availability of urease and its good cementation properties.
基金supported by the National Natural Science Foundation of China(No.52077137).
文摘Against the backdrop of China’s“dual-carbon”target,clean energy generation currently accounts for about 3.8 trillion kilowatt-hours,or 39.7 percent of total power generation,establishing a reasonable market trading mechanism while enhancing the low-carbon economic benefits of the integrated energy system(IES)and optimizing the interests of various entities within the distribution system has become a significant challenge.Consequently,this paper proposes an optimization strategy for a low-carbon economy within a multi-agent IES that considers carbon capture systems(CCS)and power-to-gas(P2G).In this framework,the integrated energy system operator(IESO)acts as the primary leader,while energy suppliers(ES),energy storage operators(ESO),and load aggregators(LA)follow.At the level of low-carbon technology,a coupling model of P2G and CCS is developed,leading to the establishment of an IES that incorporates energy conversion and storage equipment.Economically,effective control of system carbon emissions in market trading is progressively established.Lastly,the trading decision model of the system is integrated within a master-slave game framework,utilizing an improved differential evolution algorithm in conjunction with the distributed equilibrium method of quadratic programming for solution.The calculation example demonstrates that the strategy safeguards the benefits for both parties in the game and achieves energy savings and carbon reduction for the system.
基金Supported by the Scientific Research Start-up Project for the Introduction of Senior Talents of Chongqing Three Gorges Vocational College(sxzyzg-202405).
文摘The resource utilization of sludge can effectively achieve the regeneration and utilization of resources,and promote sustainable economic development.Sludge carbonization is a sludge treatment and disposal technology with broad application prospects,and its products have shown significant resource potential in land use,fuel utilization,and other fields.At present,China still faces some challenges in the resource utilization of sludge carbonization,such as issues related to heavy metal stability and outdated standards.In the future,it is necessary to further strengthen research,improve the standard system,and promote the widespread application of sludge carbonization technology,so as to achieve the goals of sludge reduction,harmlessness,and resource utilization and support the development of circular economy.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(No.2022D01B213)the Key Scientific and Technological Research Projects in the Xinjiang Production and Construction Corps,China(No.2023AB017-02)+1 种基金the West Light Foundation for Young Scholar of Chinese Academy of Sciences(No.2021-XBQNXZ-018)the National Key Research and Development Program of China(No.2022YFF1302504)。
文摘Understanding the elevational patterns of soil microbial carbon(C)metabolic potentials is instrumental for predicting changes in soil organic C(SOC)stocks in the face of climate change.However,such patterns remain uncertain in arid mountain ecosystems,where climosequences are quite different from other ecosystems.To address this gap,this study investigated the distribution determinants of microbial communities,C cycling-related genes,and SOC fractions along an elevational gradient(1707–3548 m),with a mean annual precipitation(MAP)range of 38 to 344 mm,on the north slope of the central part of the Kunlun Mountains,China using a metagenomic approach.The results showed that elevation significantly influenced the α-diversity(Shannon index)and composition of microbial communities as well as the C cycling-related genes.The α-diversities of microbial taxa and C cycling-related genes linearly increased with the increase in MAP along the elevational gradient.The elevational patterns of the genes encoding glycoside hydrolases and glycosyl transferases(GTs)were mainly driven by soil electrical conductivity(EC),mean annual temperature(MAT),MAP,and plant diversity.Furthermore,mineral-associated organic C(MAOC),particulate organic C(POC),and their sum generally increased with elevation.However,the MAOC/POC ratio followed a unimodal pattern,suggesting greater stability of the SOC pool in the mid-elevation regions.This unimodal pattern was likely influenced by the abundances of Actinobacteria and the genes encoding GTs and carbohydrate esterases and the threshold effects of soil EC and MAT.In summary,our findings indicate that the distribution patterns of microbial communities and C cycling-related genes along the elevational gradient in an arid ecosystem are distinct from those in the regions with higher MAP,facilitating the prediction of climate change effects on SOC metabolism under more arid conditions.Soil salinity,plant diversity,precipitation,and temperature are the main regulatory factors of microbial C metabolism processes,and they potentially play a central role in mediating SOC pool stability.
基金Project supported by the National Natural Science Foundation of China(52174250,92062110)the Youth Jinggang Scholars Program in Jiangxi Province(QNJG2020048)。
文摘The recovery of rare earths from industrial rare earth leaching solution is typically achieved through the ammonium carbonate precipitation method,which presents challenges in terms of prolonged production cycle and ammonia nitrogen pollution.The present study explored the synthesis of crystalline yttrium carbonate in a sodium carbonate system,employing a conventional mother liquor derived from yttrium chloride.The growth of yttrium carbonate was explored through the lens of density functional theory(DFT)calculations,unveiling a novel perspective on its formation mechanism.The synthesized yttrium carbonate demonstrates enhanced crystallinity,with a D50value of 19.75μm achieved under reaction conditions comprising a temperature of 60℃,stirring rate of 200 r/min,feeding rate of 4 mL/min,and aging time of 30 h.The molar ratio for precipitation is set at 1.6:1.The morphology of yttrium carbonate undergoes a transition from needle-like structures to sheet-like formations,ultimately culminating in the formation of spherical aggregates.The variation in surface energy among distinct crystal planes and CO_(3)^(2-)configurations within crystal cells accounts for this phenomenon.The DFT calculations unveil a progression of growth and trans formation in yttrium carbonate,commencing from a one-dimensional configuration and culminating in a multidimensional morphology.