期刊文献+
共找到283,035篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
2
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
3
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
4
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
5
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于Hadoop平台下的Canopy-Kmeans高效算法 被引量:39
6
作者 赵庆 《电子科技》 2014年第2期29-31,共3页
介绍了Hadoop平台下MapReduce的编程模型;分析了传统聚类Kmeans和Canopy算法的优缺点,并提出了基于Canopy的改进Kmeans算法。针对Canopy-Kmeans算法中Canopy选取的随机性问题,采用"最小最大原则"对该算法进行改进,避免了Cann... 介绍了Hadoop平台下MapReduce的编程模型;分析了传统聚类Kmeans和Canopy算法的优缺点,并提出了基于Canopy的改进Kmeans算法。针对Canopy-Kmeans算法中Canopy选取的随机性问题,采用"最小最大原则"对该算法进行改进,避免了Cannopy选取的盲目性。采用MapReduce并行编程方法,以海量新闻信息聚类作为应用背景。实验结果表明,此方法相对于传统Kmeans和Canopy算法有着更高的准确率和稳定性。 展开更多
关键词 HADOOP MAPREDUCE canopy-kmeans算法 聚类
在线阅读 下载PDF
双MapReduce改进的Canopy-Kmeans算法 被引量:6
7
作者 刘宝龙 苏金 《西安工业大学学报》 CAS 2016年第9期730-737,共8页
由于传统的Canopy-Kmeans算法在中心点的选取存在随机性,其迭代过程的冗余计算降低了算法的运行效率.文中基于"最小最大原则"和三角不等式原理,在Hadoop平台上提出了一种基于双MapReduce改进的Canopy-Kmeans算法.实验结果表明:设计... 由于传统的Canopy-Kmeans算法在中心点的选取存在随机性,其迭代过程的冗余计算降低了算法的运行效率.文中基于"最小最大原则"和三角不等式原理,在Hadoop平台上提出了一种基于双MapReduce改进的Canopy-Kmeans算法.实验结果表明:设计的并行算法精确率在不同大小的数据集上平均提高了15.3%,加速比和扩展性随着数据规模和节点的不断增加也相应的提高了1.5~3倍,解决了Canopy中心点选中存在的问题和迭代过程中冗余的距离计算. 展开更多
关键词 canopy-kmeans 冗余计算 HADOOP平台 双MapReduce
在线阅读 下载PDF
基于MapReduce的Canopy-Kmeans改进算法 被引量:67
8
作者 毛典辉 《计算机工程与应用》 CSCD 2012年第27期22-26,68,共6页
针对分布式Canopy-Kmeans算法中Canopy选取的随机性问题,采用"最小最大原则"对该算法进行了改进,避免了Cannopy选取的盲目性;采用MapReduce并行计算框架对算法进行了并行扩展,使之能够充分利用集群的计算和存储能力,从而适应... 针对分布式Canopy-Kmeans算法中Canopy选取的随机性问题,采用"最小最大原则"对该算法进行了改进,避免了Cannopy选取的盲目性;采用MapReduce并行计算框架对算法进行了并行扩展,使之能够充分利用集群的计算和存储能力,从而适应海量数据的应用场景。以海量互联网新闻信息聚类作为应用背景,对改进后的算法进行了实验分析。实验结果表明:该方法较随机挑选Canopy策略在分类准确率以及抗噪能力上都明显提高,而且在处理海量数据时表现出较大的性能优势。 展开更多
关键词 canopy-kmeans算法 MAPREDUCE 分布式聚类
在线阅读 下载PDF
基于MapReduce的Canopy-Kmeans算法的并行化 被引量:2
9
作者 张友海 李锋刚 《辽宁科技学院学报》 2017年第1期4-5,13,共3页
数据挖掘的聚类算法Canopy-Kmeans是分析数据内在价值的常用工具之一,传统的基于集中控制的方式算法执行效率,在今天大数据环境下,有待改进。文章数据源为某省运营商在2014年7月经过脱敏后的话单信令数据,通过传统的集中控制方式和基于M... 数据挖掘的聚类算法Canopy-Kmeans是分析数据内在价值的常用工具之一,传统的基于集中控制的方式算法执行效率,在今天大数据环境下,有待改进。文章数据源为某省运营商在2014年7月经过脱敏后的话单信令数据,通过传统的集中控制方式和基于MapReduce的方式。通过实验,我们可以看出使用MapReduce方式具有良好的可行性,而且执行效率也得到明显改善[1]。 展开更多
关键词 聚类算法 canopy-kmeans MAPREDUCE
在线阅读 下载PDF
基于Hadoop平台Canopy-Kmeans聚类算法优化改进研究 被引量:2
10
作者 周功建 《安徽广播电视大学学报》 2018年第4期117-122,128,共7页
在分析Hadoop平台架构和Canopy-Kmeans聚类算法的基础上,对Canopy-Kmeans算法进行了并行化优化改进,通过统计学思维对数据分组抽样后聚类以方便并行化和降低时间复杂度,利用最小最大原则优化Canopy初始中心点选取,用数据异度均值抽样法... 在分析Hadoop平台架构和Canopy-Kmeans聚类算法的基础上,对Canopy-Kmeans算法进行了并行化优化改进,通过统计学思维对数据分组抽样后聚类以方便并行化和降低时间复杂度,利用最小最大原则优化Canopy初始中心点选取,用数据异度均值抽样法保证从原数据中均匀提取数据样本,并对Kmeans迭代计算过程进行优化。结合Hadoop平台下MapReduce框架将改进算法进行并行化设计实现。实验表明,对海量数值数据进行聚类时,改进的Canopy-Kmeans并行算法是有效的、收敛的,在聚类准确率和时效性上都有一定程度的提升。 展开更多
关键词 HADOOP MAPREDUCE 聚类分析 Kmeans算法 canopy-kmeans算法 加速比
在线阅读 下载PDF
Canopy-Kmeans聚类和组合优化的铁矿预配料智能调度 被引量:8
11
作者 曹跃 王雅琳 +2 位作者 何海明 杨卜菘 桂卫华 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第7期947-955,共9页
铁矿预配料的原料种类繁多、化学成分差异较大,且下料槽个数有限、生产约束多,原料下料次序难以确定.针对该配料调度难题,本文提出了一种基于聚类算法和组合优化的铁矿混匀过程预配料智能调度方法.分别根据原料成分中SiO_2,TFe含量的差... 铁矿预配料的原料种类繁多、化学成分差异较大,且下料槽个数有限、生产约束多,原料下料次序难以确定.针对该配料调度难题,本文提出了一种基于聚类算法和组合优化的铁矿混匀过程预配料智能调度方法.分别根据原料成分中SiO_2,TFe含量的差异,采用Canopy-Kmeans聚类方法进行两次聚类,然后综合考虑各项约束条件,利用融合专家规则的组合优化和小范围穷举思想对聚类结果进行组合与排序,得到原料共槽方案与共槽下料次序,以保证在有限下料槽的情况下配完所有原料,且配得的混匀料化学元素含量始终尽可能稳定.经我国某钢铁厂实际生产数据验证,所提方法与现有人工计算方法相比,大幅缩减了运算时间,且矿物化学元素指标的波动小,具有实用价值. 展开更多
关键词 铁矿预配料 有限下料槽 canopy-kmeans算法 组合优化 智能调度
在线阅读 下载PDF
云计算平台上的Canopy-Kmeans并行聚类算法研究 被引量:1
12
作者 孙秀娟 《现代电子技术》 北大核心 2019年第19期78-81,共4页
针对大数据的高维特性及海量性,提出云计算平台中的Canopy-Kmeans并行聚类算法,通过三角不等式原理,能够使计算冗余降低,使算法执行速度得到提高。对Canopy-Kmeans并行聚类算法进行深入的研究,并且在大量不同大小数据集中的实验结果表明... 针对大数据的高维特性及海量性,提出云计算平台中的Canopy-Kmeans并行聚类算法,通过三角不等式原理,能够使计算冗余降低,使算法执行速度得到提高。对Canopy-Kmeans并行聚类算法进行深入的研究,并且在大量不同大小数据集中的实验结果表明,所设计的并行聚类算法具有良好的加速比、数据伸缩率及扩展率等特点,能够在海量数据挖掘及分析中使用。 展开更多
关键词 云计算平台 canopy-kmeans算法 并行聚类算法 大数据挖掘 集群数据 数据分析
在线阅读 下载PDF
基于Canopy-Kmeans的移动商务用户需求聚合挖掘及分析研究 被引量:5
13
作者 吴运明 王令村 +1 位作者 魏子栋 郭顺利 《情报科学》 CSSCI 北大核心 2022年第10期97-106,共10页
【目的/意义】为了协助商家和平台获取移动商务在线评论中的用户需求,解决在线评论过载导致用户需求提取困难等问题。【方法/过程】本文首先获取原始在线评论数据集进行文本预处理和清洗;然后,深入语义层面基于改进后的Canopy-Kmeans算... 【目的/意义】为了协助商家和平台获取移动商务在线评论中的用户需求,解决在线评论过载导致用户需求提取困难等问题。【方法/过程】本文首先获取原始在线评论数据集进行文本预处理和清洗;然后,深入语义层面基于改进后的Canopy-Kmeans算法实现用户需求聚合;最后,以聚合结果为层级指标设计Kano问卷,用重要性判别方法和用户满意度指数优化用户需求分类标准,实现用户需求的高效聚合和精准挖掘。【结果/结论】通过实验结果对比分析发现与基于语义的传统聚类方法相比,本文设计的移动商务用户需求聚合与挖掘方法的聚类结果更清晰合理,能够获取更精准和细化的用户需求。【创新/局限】借助Word2vec模型从语义的视角分析用户需求,提出基于Canopy-Kmeans算法的用户需求聚合挖掘模型,但选取的研究对象和数据规模较为有限,下一步将扩大在线商品评论的研究范围及实验数据规模。 展开更多
关键词 在线评论 用户需求聚合 canopy-kmeans KANO模型 移动商务
原文传递
基于密度峰值优化的Canopy-Kmeans并行算法 被引量:7
14
作者 李琪 张欣 +1 位作者 张平康 张航 《通信技术》 2018年第2期312-317,共6页
随着数据规模的爆炸式增长,利用K-means等聚类算法挖掘大数据的潜在价值,已成为一个当前较为重要的研究方向。将Canopy算法与K-means算法结合,可解决K个中心点的选取问题。而针对Canopy-Kmeans算法中初始中心点选取随机、算法受噪声点... 随着数据规模的爆炸式增长,利用K-means等聚类算法挖掘大数据的潜在价值,已成为一个当前较为重要的研究方向。将Canopy算法与K-means算法结合,可解决K个中心点的选取问题。而针对Canopy-Kmeans算法中初始中心点选取随机、算法受噪声点影响等问题,提出了一种利用密度峰值改进的M-Canopy-Kmeans算法,并采用Spark框架实现算法的并行化。实验结果表明,改进后的算法避免了Canopy中心点选取的盲目性,且有效排除了样本中的噪声点,准确性、抗噪性都有明显提高,且在Spark并行框架中具有良好的加速比和扩展性。 展开更多
关键词 密度峰值 SPARK canopy-kmeans 聚类
在线阅读 下载PDF
基于Canopy-Kmeans算法的电力企业流量数据分析研究 被引量:1
15
作者 黄冠杰 《信息技术与网络安全》 2022年第1期18-22,共5页
针对电力企业关键信息基础设施大量业务数据易遭受网络攻击的现象,基于各业务信息系统下已有的网络安全设备,通过辅助设备采集流量数据,采用Canopy-Kmeans算法进行数据分析研究。首先通过实验证明了Canopy-Kmeans算法在处理流量数据时,... 针对电力企业关键信息基础设施大量业务数据易遭受网络攻击的现象,基于各业务信息系统下已有的网络安全设备,通过辅助设备采集流量数据,采用Canopy-Kmeans算法进行数据分析研究。首先通过实验证明了Canopy-Kmeans算法在处理流量数据时,相比传统K-means算法,具有更好的聚类效果,准确率提高约11%;然后以采集到的电力关键业务系统的流量数据为基础,基于Canopy-Kmeans算法进行挖掘分析实验,完成相同类型流量数据的聚类,分析出攻击流量与业务流量的特征项,排除部分误报信息,合理开展网络安全防护工作。 展开更多
关键词 电力 流量采集 canopy-kmeans 聚类 流量分析
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
16
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
17
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
18
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
19
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:2
20
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部