Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with ...Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.展开更多
The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing perfor...The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing performance of BBZSr glass were investigated thoroughly.The experimental results show that the total proportions of [BO3] group and [BO4] group decrease and the vibrations of [BiO3] group and [BiO6] group become weaker with the increase of SrO addition content,suggesting the glass network structure is strengthened owing to the SrO addition.Hence,both the thermal and chemical stability were significantly improved as the SrO content was increased.When the SrO content increased from 0 to 15mol%,the glass transition temperature and softening temperature slightly increased from 380 to 388 ℃ and from 392.7 to 402.2 ℃,respectively,meanwhile the coefficient of thermal expansion also increased from 10.49×10^-6 to 11.16×10^-6/℃ (30-300 ℃).The BBZSr glass with 15mol% SrO exhibited excellent comprehensive properties with low glass transition temperature(384.9 ℃),low softening temperature(400.3 ℃),high coefficient of thermal expansion (11.14×10^-6 ℃,30-300 ℃),good thermal and chemical stability.Besides,the glass had the good wetting behavior and sealing performance for Al-50%Si alloy.展开更多
CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning ...CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that there are SiO2 and some unknown phases in CBS glass melting liquid from 1 300 ℃ to 1 500 ℃ and the amount of these phases decreases with the increase of the melting temperature. The CBS glass melted at 1 450 ℃ could be sintered from 830 ℃ to 930 ℃ and the bulk densities of the samples are all higher than 2.4 g/cm^3. From the points of the properties and energy conservation, the melting temperature of 1 450 ℃ is the optimal melting temperature. The glass ceramic sintered at 850 ℃ exhibits better dielectric properties: er=6.33, tan6=2.2×10^-3 at 10 GHz, and the major phases of the samples are CaSiO3, CaB2O4 and SiO2.展开更多
In order to investigate the effect of the La2O3 on the phase separation and crystallization of ZnO-B2O3-SiO2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the mic...In order to investigate the effect of the La2O3 on the phase separation and crystallization of ZnO-B2O3-SiO2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the microstructure morphology and distribution of elements in different sample areas were characterized by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS);the non-isothermal crystallization kinetics of the glass samples was studied by using a differential scanning calorimeter(DSC) and the precipitated crystals of crystallized glass were determined by the X-ray diffraction(XRD). The results suggest that the phase separation and crystallization of 60ZnO-30 B2O3-10SiO2 glass occur at glass surface, and the incorporation of small amount(<4 mol%) of La2O3 significantly inhibits the glass phase separation and consequently improves the thermal stability of glass.Doping of La2O3 accelerates the glass crystallization at the elevated temperature(660 ℃), making the depth of crystal layer thicker and diffraction intensity in XRD patterns stronger. However, due to the precipitation of several crystals that occur simultaneously when La2O3 doping amount is 4 mol%, crystallization of the 60ZnO-30B2O3-10SiO2 glass is obviously depressed, the crystallization activation energy Ec and the relative crystallinity Xc of the glass reach the maximum and the minimum values, respectively.Although transition from one-dimensional growth of crystals to two-dimensional growth of crystals results from La2O3 addition, the one-dimensional growth of crystals remains dominant in crystallization process. This work can provide some useful information for preparing glass ceramics with nano-crystals precipitated in the glass surface.展开更多
The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR...The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).展开更多
B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells....B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells. The effects of Al_2O_3 content on the structures, thermal properties, and sintering behaviors of the B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass were investigated in detail. The Al_2O_3 content largely influenced the structures and thermal properties of the glass. When the Al_2O_3 content 5mol%, the transition temperature of the glass decreased with the Al_2O_3 content, while the crystallization temperature increased with the Al_2O_3 content. However, higher Al_2O_3 content degraded the stability of the glass. The B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with 5 mol% Al_2O_3 content exhibits the optimal sintering densification characteristics and can be used as glass sealants for solid oxide fuel cells.展开更多
The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyse...The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.展开更多
B2O3-BaO-ZnO glass was prepared by using conventional melt quenching technology. The forming regularity and the relationship between the composition and the property of B2O3BaOZnO glass were investigated. The results ...B2O3-BaO-ZnO glass was prepared by using conventional melt quenching technology. The forming regularity and the relationship between the composition and the property of B2O3BaOZnO glass were investigated. The results show that the composition range for forming B2O3BaOZnO glass is very wide, but the content of B2O3 has a limit within mole fraction of 25%75%. When the content of B2O3 is over the limit, the melt will be divided into two phases with different compositions and structures, whereas too low content of B2O3 will result in the crystallization of the melt during the cooling process. The thermal expansion coefficient, the transition temperature and the resistivity of the glass at room temperature are (510)×10 -6℃ -1, 480620℃ and (1.53.0)×10 10Ω·m, respectively.展开更多
Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses fo...Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses focus on the structural influence of the additional oxide in the context of low-melting-point electronic sealing applications. In this study, the structure of quaternary Bi2O3- ZnO-B2O3-BaO glasses was investigated spectroscopic ally, with Fourier-transform-infrared (FT-IR) and Raman spectra recorded for glasses with different main oxide contents. Signals in the FT-IR are mainly observed around 500 cm﹣1, 720 cm﹣1, 840 cm﹣1, 980 - 1080 cm﹣1, and 1200 - 1500 cm﹣1, while the Raman scattering peaks are located at 130 cm﹣1, 390 cm﹣1, 575 cm﹣1, 920 cm﹣1, and 1250 cm﹣1. The glasses are mainly structured around [BO3] units and the numbers of [BiO6] and [BiO3] units increase with the Bi2O3 content increasing. Concurrently, the FT-IR absorption peaks associated with [BO4] units shift to lower wave numbers, indicating a loosening of the glass structure. However, as the B2O3 content is increased, the numbers of [BO3] and [BO4] units increase, while those of [BiO3] and [BiO6] units decrease, highlighting a densification of the glass structure. ZnO acts as a network modifier in these glasses.展开更多
基金Project(50272043) supported by the National Natural Science Foundation of China
文摘Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.
基金the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(No.KLIFMD-2018-06)。
文摘The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing performance of BBZSr glass were investigated thoroughly.The experimental results show that the total proportions of [BO3] group and [BO4] group decrease and the vibrations of [BiO3] group and [BiO6] group become weaker with the increase of SrO addition content,suggesting the glass network structure is strengthened owing to the SrO addition.Hence,both the thermal and chemical stability were significantly improved as the SrO content was increased.When the SrO content increased from 0 to 15mol%,the glass transition temperature and softening temperature slightly increased from 380 to 388 ℃ and from 392.7 to 402.2 ℃,respectively,meanwhile the coefficient of thermal expansion also increased from 10.49×10^-6 to 11.16×10^-6/℃ (30-300 ℃).The BBZSr glass with 15mol% SrO exhibited excellent comprehensive properties with low glass transition temperature(384.9 ℃),low softening temperature(400.3 ℃),high coefficient of thermal expansion (11.14×10^-6 ℃,30-300 ℃),good thermal and chemical stability.Besides,the glass had the good wetting behavior and sealing performance for Al-50%Si alloy.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program of ChinaProject(BE2010194) supported by Science&Technology Pillar Program of Jiangsu Province, China+1 种基金Project(KF201103) supported by the State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, ChinaProject supported by the Priority Academic Development of Jiangsu Higher Education Institutions, China
文摘CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that there are SiO2 and some unknown phases in CBS glass melting liquid from 1 300 ℃ to 1 500 ℃ and the amount of these phases decreases with the increase of the melting temperature. The CBS glass melted at 1 450 ℃ could be sintered from 830 ℃ to 930 ℃ and the bulk densities of the samples are all higher than 2.4 g/cm^3. From the points of the properties and energy conservation, the melting temperature of 1 450 ℃ is the optimal melting temperature. The glass ceramic sintered at 850 ℃ exhibits better dielectric properties: er=6.33, tan6=2.2×10^-3 at 10 GHz, and the major phases of the samples are CaSiO3, CaB2O4 and SiO2.
基金Project supported by National Natural Science Foundation of China(51662033,51362019)Natural Science Foundation of the Inner Mongolia Autonomous Region(2016JQ05)
文摘In order to investigate the effect of the La2O3 on the phase separation and crystallization of ZnO-B2O3-SiO2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the microstructure morphology and distribution of elements in different sample areas were characterized by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS);the non-isothermal crystallization kinetics of the glass samples was studied by using a differential scanning calorimeter(DSC) and the precipitated crystals of crystallized glass were determined by the X-ray diffraction(XRD). The results suggest that the phase separation and crystallization of 60ZnO-30 B2O3-10SiO2 glass occur at glass surface, and the incorporation of small amount(<4 mol%) of La2O3 significantly inhibits the glass phase separation and consequently improves the thermal stability of glass.Doping of La2O3 accelerates the glass crystallization at the elevated temperature(660 ℃), making the depth of crystal layer thicker and diffraction intensity in XRD patterns stronger. However, due to the precipitation of several crystals that occur simultaneously when La2O3 doping amount is 4 mol%, crystallization of the 60ZnO-30B2O3-10SiO2 glass is obviously depressed, the crystallization activation energy Ec and the relative crystallinity Xc of the glass reach the maximum and the minimum values, respectively.Although transition from one-dimensional growth of crystals to two-dimensional growth of crystals results from La2O3 addition, the one-dimensional growth of crystals remains dominant in crystallization process. This work can provide some useful information for preparing glass ceramics with nano-crystals precipitated in the glass surface.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program ("863" Program) of ChinaProject(BE2010194) supported by Science & Technology Pillar Program of Jiangsu in China+3 种基金Project(BE2009168) supported by Science & Technology Pillar Program of Jiangsu in ChinaProject supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education InstitutionsProject(KF201103) supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua UniversityProject(CXZZ12_0415) supported by Innovation Foundation for Graduate Students of Jiangsu Province,China
文摘The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).
基金Funded by the Jiangxi Provincial Department of Education(KJLD13008)the National Natural Science Foundation of China(number 51362020)the Research Fund for the Doctoral Program of Higher Education(20123601110006)
文摘B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with different Al_2O_3 contents(1mol%, 3mol%, 5mol%, and 7mol%) was prepared, and it was intended to be used as lead-free and low-melting glass sealants for solid oxide fuel cells. The effects of Al_2O_3 content on the structures, thermal properties, and sintering behaviors of the B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass were investigated in detail. The Al_2O_3 content largely influenced the structures and thermal properties of the glass. When the Al_2O_3 content 5mol%, the transition temperature of the glass decreased with the Al_2O_3 content, while the crystallization temperature increased with the Al_2O_3 content. However, higher Al_2O_3 content degraded the stability of the glass. The B_2O_3-SiO_2-ZnO-BaO-Al_2O_3 glass with 5 mol% Al_2O_3 content exhibits the optimal sintering densification characteristics and can be used as glass sealants for solid oxide fuel cells.
基金Projects(51264023,51364020,U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(2014HA003)supported by the Science and Technology Leading Talent of Yunnan Province,China
文摘The crystallization behavior and kinetics of CaO-MgO-Al2O3 SiO2(CMAS) glass with the Fe2O3 content ranging from zero to 5%were investigated by differential scanning calorimetry(DSC).The structure and phase analyses were made by Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD).The experiment results show that the endothermic peak temperature about 760℃ is associated with transition and the exothermic peak temperature about 1000℃ is associated with crystallization.The crystallization peak temperature decreases with increasing the Fe203 content.The crystallization mechanism is changed from two-dimensional crystallization to one-dimensional growth,and the intensity of diopside peaks becomes stronger gradually.There is a saltation for the crystallization temperature with the addition of 0.5%Fe2O3 due to the decomposition of Fe2O3.Si-O-Si,O-Si-O and T-O-T(T=Si,Fe,Al) linkages are observed in Fe2O3-CaO-MgO-Al2O3-SiO2 glass.
文摘B2O3-BaO-ZnO glass was prepared by using conventional melt quenching technology. The forming regularity and the relationship between the composition and the property of B2O3BaOZnO glass were investigated. The results show that the composition range for forming B2O3BaOZnO glass is very wide, but the content of B2O3 has a limit within mole fraction of 25%75%. When the content of B2O3 is over the limit, the melt will be divided into two phases with different compositions and structures, whereas too low content of B2O3 will result in the crystallization of the melt during the cooling process. The thermal expansion coefficient, the transition temperature and the resistivity of the glass at room temperature are (510)×10 -6℃ -1, 480620℃ and (1.53.0)×10 10Ω·m, respectively.
文摘Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses focus on the structural influence of the additional oxide in the context of low-melting-point electronic sealing applications. In this study, the structure of quaternary Bi2O3- ZnO-B2O3-BaO glasses was investigated spectroscopic ally, with Fourier-transform-infrared (FT-IR) and Raman spectra recorded for glasses with different main oxide contents. Signals in the FT-IR are mainly observed around 500 cm﹣1, 720 cm﹣1, 840 cm﹣1, 980 - 1080 cm﹣1, and 1200 - 1500 cm﹣1, while the Raman scattering peaks are located at 130 cm﹣1, 390 cm﹣1, 575 cm﹣1, 920 cm﹣1, and 1250 cm﹣1. The glasses are mainly structured around [BO3] units and the numbers of [BiO6] and [BiO3] units increase with the Bi2O3 content increasing. Concurrently, the FT-IR absorption peaks associated with [BO4] units shift to lower wave numbers, indicating a loosening of the glass structure. However, as the B2O3 content is increased, the numbers of [BO3] and [BO4] units increase, while those of [BiO3] and [BiO6] units decrease, highlighting a densification of the glass structure. ZnO acts as a network modifier in these glasses.