The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance ...The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.展开更多
Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance stren...Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance strength,porosity,and dimensional precision.This study partially fills this research gap through a systematic investigation of calcium oxide(CaO)doping effects on alumina ceramic cores fabricated via ceramic stereolithography,with controlled doping ratios and sintering parameters.A ceramic paste was prepared using coarse and fine Al_(2)O_(3) particles mixed with CaO as a sintering aid,followed by debinding and sintering to achieve optimal mechanical properties.The results show that CaO doping significantly enhances the fiexural strength of alumina cores while maintaining porosity levels between 20%and 30%and controlling the sintering shrinkage rate to about 5%.Additionally,CaO doping alters the microstructure by inhibiting the transformation of spherical fine particles into fiaky grains,improving sintering activity.However,as the CaO doping content increases,the bending strength increases,while the shrinkage rate of the material also tends to increase,resulting in a reduction in the overall porosity.This has a negative impact on the control of the manufacturing precision of turbine blades.Thus,although CaO doping improves strength and microstructure,achieving necessary dimensional control requires further optimization of doping content and sintering conditions.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The res...The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.展开更多
New materials have been developed for PDP for fast addressing and power reduction.They show the transition in R&D from materials invented accidentally to materials-by-design.Cathode-luminescence on MgO crystals is...New materials have been developed for PDP for fast addressing and power reduction.They show the transition in R&D from materials invented accidentally to materials-by-design.Cathode-luminescence on MgO crystals is used to compare thermally assisted recombination and tunneling.Bethe Salpeter equations(BSE) are used to predict the exciton properties of mixed oxides like MgCaO.Using new materials an ultra-thin(300 μm) and flexible Shadow-Mask PDP has been realized.The same device is also operated in a reverse mode,where high energy radiation is imaged,using the Gaseous Electron Multiplier(GEM) effect in the Townsend展开更多
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.
基金financially supported by the National Key R&D Program of China(No.2023YFB4606101)the National Key R&D Program of China(No.2022YFB4601404)+3 种基金the Innovative and Entrepreneurial PhD Program of Jiangsu Province(No.JSSCBS20210836)the youth program of Jiangnan University(No.JUSRP121038)the Taihu Talent Program of Wuxi Citythe Innovative and Entrepreneurial Talent Program of Jiangsu Province(No.JSSCRC2021531)。
文摘Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance strength,porosity,and dimensional precision.This study partially fills this research gap through a systematic investigation of calcium oxide(CaO)doping effects on alumina ceramic cores fabricated via ceramic stereolithography,with controlled doping ratios and sintering parameters.A ceramic paste was prepared using coarse and fine Al_(2)O_(3) particles mixed with CaO as a sintering aid,followed by debinding and sintering to achieve optimal mechanical properties.The results show that CaO doping significantly enhances the fiexural strength of alumina cores while maintaining porosity levels between 20%and 30%and controlling the sintering shrinkage rate to about 5%.Additionally,CaO doping alters the microstructure by inhibiting the transformation of spherical fine particles into fiaky grains,improving sintering activity.However,as the CaO doping content increases,the bending strength increases,while the shrinkage rate of the material also tends to increase,resulting in a reduction in the overall porosity.This has a negative impact on the control of the manufacturing precision of turbine blades.Thus,although CaO doping improves strength and microstructure,achieving necessary dimensional control requires further optimization of doping content and sintering conditions.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
基金Project (2005CB623703) supported by the National Key Fundamental Research and Development Program of ChinaProject (50474051) supported by the National Natural Science Foundation of ChinaProject (03JJY3080) supported by the Natural Science Foundation of Hunan Province, China
文摘The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.
基金supported by the National Natural Science Foundation of China(60871015)the National High Technology Research(863 Program of China(2008AA03A308))Innovation Project of Jiangsu Graduate Education(CXZZ11_0143)
文摘New materials have been developed for PDP for fast addressing and power reduction.They show the transition in R&D from materials invented accidentally to materials-by-design.Cathode-luminescence on MgO crystals is used to compare thermally assisted recombination and tunneling.Bethe Salpeter equations(BSE) are used to predict the exciton properties of mixed oxides like MgCaO.Using new materials an ultra-thin(300 μm) and flexible Shadow-Mask PDP has been realized.The same device is also operated in a reverse mode,where high energy radiation is imaged,using the Gaseous Electron Multiplier(GEM) effect in the Townsend