Objective:To study the potential of Pituranthos chloranthus essential oil(PC)as a chemoprotective agent.Methods:In the in vitro study,cell proliferation were determined in CT26,SW620,and SW480 cells.Cells were exposed...Objective:To study the potential of Pituranthos chloranthus essential oil(PC)as a chemoprotective agent.Methods:In the in vitro study,cell proliferation were determined in CT26,SW620,and SW480 cells.Cells were exposed to in creasing concentrations of PC(0,6.25,12.5,25,50,100,and 200μg/mL).Combination index was calculated by applying the Chou-Talalay method,apoptopsis was analyzed by annexin V/propidium iodide staining,reactive oxygen species accumulation,and theΔψm drop were also assessed.In the in vivo study,mice were divided into 5 groups:the normal control group,the CT26 tumor-bearing group,the CT26 tumor-bearing mice+PC group,the CT26 tumor-bearing mice+cisplatin group,and the CT26 tumor-bearing mice+cisplatin+PC group.Organ coefficients and tumor volume were calculated.Alanine aminotransferase,aspartate aminotransferase,creatinine,and tumor necrosis factor-αlevels were assessed.Results:Cisplatin with PC induced a synergistic effect,allowing for reduced cisplatin dose while maintaining the same therapeutic efficacy.PC-cisplatin combinations inhibited cell viability by significantly inducing apoptosis,increasing reactive oxygen species accumulation and reducing mitochondrial membrane potential.Co-treatment with cisplatin and PC restored organ coefficients,reduced tumor volume,and alleviated nephrotoxicity in CT26 tumor-bearing mice by restoring kidney function markers and ameliorating kidney inflammation status.Conclusions:PC shows a chemoprotective potential by enhancing the antitumor effect of cisplatin while alleviating its side effects.展开更多
BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with ...BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with the conventional energyintegrating detector CT.AIM To evaluate PCD CT in oncologic imaging,focusing on its role in tumor detection,staging,and treatment response assessment.METHODS We performed a systematic PubMed search from January 1,2017 to December 31,2024,using the keywords“photon-counting CT”,“cancer”,and“tumor”to identify studies on its use in oncologic imaging.We included experimental studies on humans or human phantoms and excluded reviews,commentaries,editorials,non-English,animal,and non-experimental studies.Study selection followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Out of 175 initial studies,39 met the inclusion criteria after screening and full-text review.Data extraction focused on study type,country of origin,and oncologic applications of photon-counting CT.No formal risk of bias assessment was performed,and the review was not registered in PROSPERO as it did not include a meta-analysis.RESULTS Key findings highlighted the advantages of PCD CT in imaging renal masses,adrenal adenomas,ovarian cancer,breast cancer,prostate cancer,pancreatic tumors,hepatocellular carcinoma,metastases,multiple myeloma,and lung cancer.Additionally,PCD CT has demonstrated improved lesion characterization and enhanced diagnostic accuracy in oncology.Despite its promising capabilities challenges related to data processing,storage,and accessibility remain.CONCLUSION As PCD CT technology evolves,its integration into routine oncologic imaging has the potential to significantly enhance cancer diagnosis and patient management.展开更多
基金funded by The Tunisian Ministry of Research and Higher Education.
文摘Objective:To study the potential of Pituranthos chloranthus essential oil(PC)as a chemoprotective agent.Methods:In the in vitro study,cell proliferation were determined in CT26,SW620,and SW480 cells.Cells were exposed to in creasing concentrations of PC(0,6.25,12.5,25,50,100,and 200μg/mL).Combination index was calculated by applying the Chou-Talalay method,apoptopsis was analyzed by annexin V/propidium iodide staining,reactive oxygen species accumulation,and theΔψm drop were also assessed.In the in vivo study,mice were divided into 5 groups:the normal control group,the CT26 tumor-bearing group,the CT26 tumor-bearing mice+PC group,the CT26 tumor-bearing mice+cisplatin group,and the CT26 tumor-bearing mice+cisplatin+PC group.Organ coefficients and tumor volume were calculated.Alanine aminotransferase,aspartate aminotransferase,creatinine,and tumor necrosis factor-αlevels were assessed.Results:Cisplatin with PC induced a synergistic effect,allowing for reduced cisplatin dose while maintaining the same therapeutic efficacy.PC-cisplatin combinations inhibited cell viability by significantly inducing apoptosis,increasing reactive oxygen species accumulation and reducing mitochondrial membrane potential.Co-treatment with cisplatin and PC restored organ coefficients,reduced tumor volume,and alleviated nephrotoxicity in CT26 tumor-bearing mice by restoring kidney function markers and ameliorating kidney inflammation status.Conclusions:PC shows a chemoprotective potential by enhancing the antitumor effect of cisplatin while alleviating its side effects.
文摘BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with the conventional energyintegrating detector CT.AIM To evaluate PCD CT in oncologic imaging,focusing on its role in tumor detection,staging,and treatment response assessment.METHODS We performed a systematic PubMed search from January 1,2017 to December 31,2024,using the keywords“photon-counting CT”,“cancer”,and“tumor”to identify studies on its use in oncologic imaging.We included experimental studies on humans or human phantoms and excluded reviews,commentaries,editorials,non-English,animal,and non-experimental studies.Study selection followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Out of 175 initial studies,39 met the inclusion criteria after screening and full-text review.Data extraction focused on study type,country of origin,and oncologic applications of photon-counting CT.No formal risk of bias assessment was performed,and the review was not registered in PROSPERO as it did not include a meta-analysis.RESULTS Key findings highlighted the advantages of PCD CT in imaging renal masses,adrenal adenomas,ovarian cancer,breast cancer,prostate cancer,pancreatic tumors,hepatocellular carcinoma,metastases,multiple myeloma,and lung cancer.Additionally,PCD CT has demonstrated improved lesion characterization and enhanced diagnostic accuracy in oncology.Despite its promising capabilities challenges related to data processing,storage,and accessibility remain.CONCLUSION As PCD CT technology evolves,its integration into routine oncologic imaging has the potential to significantly enhance cancer diagnosis and patient management.