期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
CSI Feedback-based CS for Underwater Acoustic Adaptive Modulation OFDM System with Channel Prediction 被引量:3
1
作者 蒯小燕 孙海信 +4 位作者 齐洁 程恩 许小卡 郭瑜辉 陈友淦 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期391-400,共10页
In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of ... In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method. 展开更多
关键词 adaptive modulation OFDM csi feedback compressed sensing channel prediction underwater acoustic channels
在线阅读 下载PDF
AI Enlightens Wireless Communication:Analyses,Solutions and Opportunities on CSI Feedback 被引量:4
2
作者 Han Xiao Zhiqin Wang +6 位作者 Wenqiang Tian Xiaofeng Liu Wendong Liu Shi Jin Jia Shen Zhi Zhang Ning Yang 《China Communications》 SCIE CSCD 2021年第11期104-116,共13页
In this paper,we give a systematic description of the 1st Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AI Work Group.Firstly,the framework of ful... In this paper,we give a systematic description of the 1st Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AI Work Group.Firstly,the framework of full channel state information(F-CSI)feedback problem and its corresponding channel dataset are provided.Then the enhancing schemes for DL-based F-CSI feedback including i)channel data analysis and preprocessing,ii)neural network design and iii)quantization enhancement are elaborated.The final competition results composed of different enhancing schemes are presented.Based on the valuable experience of 1stWAIC,we also list some challenges and potential study areas for the design of AI-based wireless communication systems. 展开更多
关键词 MIMO csi feedback deep learning data preprocessing QUANTIZATION
在线阅读 下载PDF
AI Enlightens Wireless Communication:A Transformer Backbone for CSI Feedback 被引量:2
3
作者 Xiao Han Wang Zhiqin +7 位作者 Li Dexin Tian Wenqiang Liu Xiaofeng Liu Wendong Jin Shi Shen Jia Zhang Zhi Yang Ning 《China Communications》 SCIE CSCD 2024年第12期243-256,共14页
This paper is based on the background of the 2nd Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AIWork Group,where the framework of the eigenvector... This paper is based on the background of the 2nd Wireless Communication Artificial Intelligence(AI)Competition(WAIC)which is hosted by IMT-2020(5G)Promotion Group 5G+AIWork Group,where the framework of the eigenvector-based channel state information(CSI)feedback problem is firstly provided.Then a basic Transformer backbone for CSI feedback referred to EVCsiNet-T is proposed.Moreover,a series of potential enhancements for deep learning based(DL-based)CSI feedback including i)data augmentation,ii)loss function design,iii)training strategy,and iv)model ensemble are introduced.The experimental results involving the comparison between EVCsiNet-T and traditional codebook methods over different channels are further provided,which show the advanced performance and a promising prospect of Transformer on DL-based CSI feedback problem. 展开更多
关键词 csi feedback deep learning MIMO TRANSFORMER
在线阅读 下载PDF
Fully Connected Feedforward Neural Networks Based CSI Feedback Algorithm 被引量:1
4
作者 Ming Gao Tanming Liao Yubin Lu 《China Communications》 SCIE CSCD 2021年第1期43-48,共6页
In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of... In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity. 展开更多
关键词 massive MIMO csi feedback deep learning fully connected feedforward neural network
在线阅读 下载PDF
LoS sensing-based superimposed CSI feedback for UAV-assisted mmWave systems 被引量:1
5
作者 Chaojin QING Qing YE +3 位作者 Wenhui LIU Zilong WANG Jiafan WANG Jinliang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期349-360,共12页
In Unmanned Aerial Vehicle(UAV)-assisted millimeter Wave(mmWave)systems,Channel State Information(CSI)feedback is critical for the selection of modulation schemes,resource management,beamforming,etc.However,traditiona... In Unmanned Aerial Vehicle(UAV)-assisted millimeter Wave(mmWave)systems,Channel State Information(CSI)feedback is critical for the selection of modulation schemes,resource management,beamforming,etc.However,traditional CSI feedback methods lead to significant feedback overhead and energy consumption of the UAV transmitter,therefore shortening the system operation time.To tackle these issues,inspired by superimposed feedback and Integrated Sensing and Communications(ISAC),a Line of Sight(LoS)sensing-based superimposed CSI feedback scheme is proposed.Specifically,on the UAV transmitter side,the Ground-to-UAV(G2U)CSI is superimposed on the UAV-to-Ground(U2G)data to feed back to the ground Base Station(gBS).At the gBS,the dedicated LoS Sensing Network(LoS-SenNet)is designed to sense the U2G CSI in LoS and NLoS scenarios.With the sensed result of LoS-SenNet,the determined G2U CSI from the initial feature extraction will work as the priori information to guide the subsequent operation.Specifically,for the G2U CSI in NLoS,a CSI Recovery Network(CSI-RecNet)and superimposed interference cancellation are developed to recover the G2U CSI and U2G data.As for the LoS scenario,a dedicated LoS Aid Network(LoS-Aid Net)is embedded before the CSI-RecNet and the block of superimposed interference cancellation to highlight the feature of the G2U CSI.Compared with other methods of superimposed CSI feedback,simulation results demonstrate that the proposed feedback scheme effectively improves the recovery accuracy of the G2U CSI and U2G data.Besides,against parameter variations,the proposed feedback scheme presents its robustness. 展开更多
关键词 Channel State Information(csi) Integrated Sensing and Communications(ISAC) Line of Sight(LoS)sensing Superimposed csi feedback Unmanned Aerial Vehicle(UAV)-assisted millimeter Wave(mmWave)systems
原文传递
An Efficient CSI Feedback Scheme for Dual-Polarized MIMO Systems Using Layered Multi-Paths Information
6
作者 Feng Zheng Yijian Chen +1 位作者 Qian Zhan Jie Zhang 《China Communications》 SCIE CSCD 2017年第5期91-104,共14页
Massive MIMO is one of tile enabling technologies tbr beyond 4G and 5G systems due to its ability to provide beamforming gain and reduce interference Dual-polarized antenna is widely adopted to accommodate a large num... Massive MIMO is one of tile enabling technologies tbr beyond 4G and 5G systems due to its ability to provide beamforming gain and reduce interference Dual-polarized antenna is widely adopted to accommodate a large number of antenna elements in limited space. However, current CSI(channel state information) feedback schemes developed in LTE for conventional MIMO systems are not efficient enough for massive MIMO systems since the overhead increases almost linearly with the number of antenna. Moreover, the codebook for massive MIMO will be huge and difficult to design with the LTE methodology. This paper proposes a novel CSI feedback scheme named layered Multi-paths Information based CSI Feedback (LMPIF), which can achieve higher spectrum efficiency for dual-polarized antenna system with low feedback overhead. The MIMO channel is decomposed into long term components (multipath directions and amplitudes) and short term components (multipath phases). The relationship between the two components and the optimal precoder is derived in closed form. To reduce the overhead, different granularities in feedback time have been applied for the long term components and short term components Link and system level simulation results prove that LMPIF can improve performance considerably with low CSI feedback overhead. 展开更多
关键词 communication and information system: efficient csi feedback channel characteristie analysis dual-polarized: massive MIMO: layered Multi-Paths information codeword model
在线阅读 下载PDF
A novel zero-payload downlink CSI feedback scheme for closed-loop beamforming system
7
作者 张一衡 《High Technology Letters》 EI CAS 2009年第2期187-191,共5页
A novel downlink channel state information(CSI)feedback scheme is proposed for the closed-loopbeamforming system.In the proposed scheme,mobile terminal(MT)superposes the uplink pilot on thereceived downlink pilot,form... A novel downlink channel state information(CSI)feedback scheme is proposed for the closed-loopbeamforming system.In the proposed scheme,mobile terminal(MT)superposes the uplink pilot on thereceived downlink pilot,forms the hybrid pilot(HP),and then transmits the HP to base station(BS)viathe uplink pilot channel.Because downlink CSI can be recovered from HP at BS side without consumingextra uplink bandwidth,the proposed scheme can achieve zero-payload CSI feedback,effectively solvingthe traditional bottleneck problems,i.e.,the heavy burden for transmitting CSI.Moreover,both MT'scomplexity and feedback delays can be reduced since the downlink channel needs not to be estimated atMT any more.Simulations verify that the proposed scheme can achieve the better MSE performance forthe uplink channel estimation than the traditional scheme,and the cost for the zero-payload CSI feedbackis some acceptable loss of feedback precision. 展开更多
关键词 csi feedback hybrid pilot BEAMFORMING
在线阅读 下载PDF
A Novel Scheme for Separate Training of Deep Learning-Based CSI Feedback Autoencoders
8
作者 Lusheng Xi Yanan Yu +5 位作者 Jianzhong Yi Chao Dong Kai Niu Qiuping Huang Qiubin Gao Yongqiang Fei 《Journal of Computer and Communications》 2023年第9期143-153,共11页
In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and b... In this paper, we introduce a novel scheme for the separate training of deep learning-based autoencoders used for Channel State Information (CSI) feedback. Our distinct training approach caters to multiple users and base stations, enabling independent and individualized local training. This ensures the more secure processing of data and algorithms, different from the commonly adopted joint training method. To maintain comparable performance with joint training, we present two distinct training methods: separate training decoder and separate training encoder. It’s noteworthy that conducting separate training for the encoder can pose additional challenges, due to its responsibility in acquiring a compressed representation of underlying data features. This complexity makes accommodating multiple pre-trained decoders for just one encoder a demanding task. To overcome this, we design an adaptation layer architecture that effectively minimizes performance losses. Moreover, the flexible training strategy empowers users and base stations to seamlessly incorporate distinct encoder and decoder structures into the system, significantly amplifying the system’s scalability. . 展开更多
关键词 Autoencoder Joint Training Separate Training csi feedback
在线阅读 下载PDF
CSI Intelligent Feedback for Massive MIMO Systems in V2I Scenarios 被引量:1
9
作者 Shiyi Wang Yong Liao 《China Communications》 SCIE CSCD 2021年第7期36-43,共8页
With the rapid development of the Internet of vehicles(IoV),vehicle to everything(V2X)has strict requirements for ultra-reliable and low latency communications(URLLC),and massive multiinput multi-output(MIMO)channel s... With the rapid development of the Internet of vehicles(IoV),vehicle to everything(V2X)has strict requirements for ultra-reliable and low latency communications(URLLC),and massive multiinput multi-output(MIMO)channel state information(CSI)feedback can effectively support URLLC communication in 5G vehicle to infrastructure(V2I)scenarios.Existing research applies deep learning(DL)to CSI feedback,but most of its algorithms are based on low-speed outdoor or indoor environments and assume that the feedback link is perfect.However,the actual channel still has the influence of additive noise and nonlinear effects,especially in the high-speed V2I scene,the channel characteristics are more complex and time-varying.In response to the above problems,this paper proposes a CSI intelligent feedback network model for V2I scenarios,named residual mixnet(RM-Net).The network learns the channel characteristics in the V2I scenario at the vehicle user(User Equipment,UE),compresses the CSI and sends it to the channel;the roadside base station(Base Station,BS)receives the data and learns the compressed data characteristics,and then restore the original CSI.The system simulation results show that the RM-Net training speed is fast,requires fewer training samples,and its performance is significantly better than the existing DL-based CSI feedback algorithm.It can learn channel characteristics in high-speed mobile V2I scenarios and overcome the influence of additive noise.At the same time,the network still has good performance under high compression ratio and low signal-to-noise ratio(SNR). 展开更多
关键词 Internet of vehicles high speed mobility csi feedback deep learning DENOISING
在线阅读 下载PDF
Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction 被引量:2
10
作者 CHENG Jiaming CHEN Wei +1 位作者 LI Lun AI Bo 《ZTE Communications》 2025年第1期3-10,共8页
Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditiona... Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions. 展开更多
关键词 massive MIMO deep learning csi prediction csi feedback
在线阅读 下载PDF
TA-DD-TransNet:一种面向时延-多普勒域的CSI反馈方法
11
作者 廖勇 罗渝 +1 位作者 廖阳 叶彦劭 《电讯技术》 北大核心 2025年第5期653-662,共10页
针对车联网场景下多入多出-正交时频空(Multiple-Input Multiple-Output-Orthogonal Time Frequency Space,MIMO-OTFS)系统的信道状态信息(Channel State Information,CSI)反馈问题,提出了一种面向时延-多普勒(Delay-Dopler,DD)域CSI反... 针对车联网场景下多入多出-正交时频空(Multiple-Input Multiple-Output-Orthogonal Time Frequency Space,MIMO-OTFS)系统的信道状态信息(Channel State Information,CSI)反馈问题,提出了一种面向时延-多普勒(Delay-Dopler,DD)域CSI反馈的时间差分架构Transformer网络(Time-differencing Architecture Delay-Doppler Transformer Network,TA-DD-TransNet),引入分时反馈机制,将残差信息建模与压缩反馈相结合。网络结构融合Transformer的全局建模能力与卷积神经网络的局部特征提取优势,在保持CSI重构精度的同时显著降低了反馈比特数与计算复杂度。在不同车速、信噪比及非完美信道估计条件下的仿真实验结果表明,所提方法在归一化均方误差(Normalized Mean Squared Error,NMSE)和余弦相似度指标上均优于CsiNet、CsiNet+和BCsiNet。在60 km/h、30 dB信噪比、1/4压缩率下,TA-DD-TransNet的NMSE约-27 dB,余弦相似度达0.96。复杂度分析显示,TA-DD-TransNet在1/4压缩率下的编码器和解码器浮点运算次数分别为1.809×10^(7)和2.281×10^(7),参数量均为8.4×10~6左右,显著低于CsiNet+。所提方法能满足车联网中对高可靠低时延通信的实际需求。 展开更多
关键词 车联网(IoV) MIMO OTFS csi反馈 时延-多普勒域
在线阅读 下载PDF
大规模MIMO低压缩比条件下的CSI反馈轻量化估计
12
作者 薛建彬 高佳敏 《电讯技术》 北大核心 2025年第8期1231-1239,共9页
通过压缩信道状态信息(Channel Status Information,CSI)传输码字降低大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的CSI反馈开销,可以有效减少计算资源的使用和信息传输时间的消耗。针对如何使用轻量化模型准确估计... 通过压缩信道状态信息(Channel Status Information,CSI)传输码字降低大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的CSI反馈开销,可以有效减少计算资源的使用和信息传输时间的消耗。针对如何使用轻量化模型准确估计低压缩比条件下CSI反馈的问题,通过设计的轻量化迭代交叉网络(Iterative Cross Network,ICNet)模型,在用户端使用设计的迭代压缩模块压缩CSI反馈,基站端使用设计的迭代重建模块估计CSI反馈,以较高的准确率和较低的时间消耗估计了低压缩比条件下的CSI反馈。在COST2100模型生成的数据样本下评估了ICNet在低压缩比条件下的鲁棒性,实验表明,在较小的1/64压缩比条件下,ICNet的归一化均方误差比次优值降低了8.48%,ICNet的参数量降低了35%左右。 展开更多
关键词 大规模MIMO csi反馈 交叉卷积 低压缩比 轻量化估计
在线阅读 下载PDF
基于多分辨率PSA机制的大规模MIMO系统CSI反馈算法
13
作者 崔宁 张涵 《计算机与网络》 2025年第4期413-418,共6页
针对频分双工制式下的大规模多输入多输出(Multiple Input Multiple Output,MIMO)通信系统信道状态信息(Channel State Information,CSI)反馈开销大、精度差的问题,提出了一种基于多分辨率极化自注意力机制的大规模MIMO系统CSI反馈算法... 针对频分双工制式下的大规模多输入多输出(Multiple Input Multiple Output,MIMO)通信系统信道状态信息(Channel State Information,CSI)反馈开销大、精度差的问题,提出了一种基于多分辨率极化自注意力机制的大规模MIMO系统CSI反馈算法,使用多分辨率机制增强神经网络对CSI中不同尺度特征的特征提取能力,并通过极化自注意力机制使神经网络更关注CSI中的重要特征。仿真结果表明,该算法在COST 2100信道条件下具有优秀的性能表现。 展开更多
关键词 大规模多输入多输出 信道状态信息反馈 极化自注意力
在线阅读 下载PDF
自适应多特征融合的大规模MIMO系统CSI反馈算法 被引量:1
14
作者 张涵 刘丽哲 +2 位作者 杨朔 李勇 汪畅 《河北工业科技》 2025年第3期205-211,共7页
为了解决频分双工(frequency division duplex,FDD)制式下大规模多输入多输出(multiple input multiple output,MIMO)系统信道状态信息(channel state information,CSI)反馈精度差、多尺度特征无法自适应调整的问题,提出了一种自适应多... 为了解决频分双工(frequency division duplex,FDD)制式下大规模多输入多输出(multiple input multiple output,MIMO)系统信道状态信息(channel state information,CSI)反馈精度差、多尺度特征无法自适应调整的问题,提出了一种自适应多特征融合的大规模MIMO系统CSI反馈算法。首先,利用离散傅里叶变换(discrete fourier transform,DFT)将空频域中的CSI变换到稀疏的角度时延域并进行截断,对CSI进行初步压缩;然后,根据自编码器原理搭建包含编码器和译码器的CSI反馈网络,并采用选择性卷积网络为不同尺度的CSI特征分配不同权重,对CSI特征进行自适应调整;最后,在COST 2100信道模型下进行仿真测试,将所提算法与4种CSI智能反馈算法进行对比分析。结果表明:相较于基准算法CsiNet,所提算法的归一化均方误差(NMSE)在室内、室外条件下分别有1.7~9.3 dB和0.55~2.64 dB的提升;相较于多特征简单融合的3种CSI反馈算法,所提算法更能适应压缩率和环境的变化,在压缩损失很大的室内1/64压缩率条件下,NMSE也有1 dB以上的提升。所提算法在自编码器架构上引入了选择性卷积网络,实现了多尺度特征的自适应调整,为大规模MIMO系统的CSI反馈提供了一种新的思路。 展开更多
关键词 无线通信技术 大规模MIMO 信道状态信息反馈 卷积神经网络 选择性卷积网络
在线阅读 下载PDF
基于SFNet的大规模MIMO系统的CSI反馈算法
15
作者 张昀 黄经纬 +3 位作者 徐孙武 高贵 于舒娟 赵生妹 《通信学报》 北大核心 2025年第6期196-208,共13页
在频分双工大规模多输入多输出(MIMO)系统中,为解决现有的基于深度学习的信道状态信息(CSI)反馈方法复杂度高、反馈精度低以及未考虑量化损失的问题,基于传统CNN和Transformer架构,结合一种利用全局信息而设计的空间频率模块(SFB)以及... 在频分双工大规模多输入多输出(MIMO)系统中,为解决现有的基于深度学习的信道状态信息(CSI)反馈方法复杂度高、反馈精度低以及未考虑量化损失的问题,基于传统CNN和Transformer架构,结合一种利用全局信息而设计的空间频率模块(SFB)以及一种融合局部和全局特征的特征多尺度自适应空间注意力门(MASAG),提出了用于CSI反馈的深度学习算法SFNet。通过使用快速傅里叶卷积以及特征融合网络动态来激活更多的输入信息,同时调整接受野,以确保有选择地突出空间相关的特征,最大限度地减少干扰,使网络以非常低的计算复杂度实现了先进的性能。实验结果表明,所提算法在低复杂度情况下具有较好的估计性能,并且在不同环境下表现出较好的鲁棒性。 展开更多
关键词 深度学习 csi反馈 大规模MIMO 信道状态信息
在线阅读 下载PDF
基于UNet结构的大规模MIMO系统CSI反馈设计 被引量:1
16
作者 刘庆 李义 +4 位作者 李璘 王有军 李康 熊林麟 王平 《电讯技术》 北大核心 2025年第3期371-377,共7页
从用户端获取下行信道状态信息(Channel State Information,CSI)是频分双工(Frequency Division Duplex,FDD)模式下通信系统信息高效传输的关键,然而其反馈开销随着天线规模的增加而增大,给大规模多输入多输出(Multiple-Input Multiple-... 从用户端获取下行信道状态信息(Channel State Information,CSI)是频分双工(Frequency Division Duplex,FDD)模式下通信系统信息高效传输的关键,然而其反馈开销随着天线规模的增加而增大,给大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统带来了重大挑战。针对此问题,提出了一种基于连续卷积和注意力机制的CSI反馈网络结构U-shaped Transformer Neural Network(UTNet)。首先,编码器和解码器分别采取编码与压缩同步、解码和重建同步的连续采样结构,实现特征提取和压缩。其次,在编码器的末端和解码器的开端分别插入Transformer模块,提取不同位置之间的关联信息。最后,通过调节CSI反馈网络参数实现对发送数据长度的控制,旨在实现CSI信号更加智能和高效的反馈。实验结果表明,在不同压缩率下UTNet的归一化均方误差(Normalized Mean Square Error,NMSE)低于-27.45 dB,相较于现有基于深度学习的方法,UTNet能在保持更高精度的同时反馈开销更小。 展开更多
关键词 大规模MIMO csi反馈 深度学习 Transformer模块
在线阅读 下载PDF
基于数据聚类的CSI反馈Transformer网络简化实现方法
17
作者 还冬锐 张逸帆 姜明 《数据采集与处理》 北大核心 2025年第2期431-445,共15页
为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能... 为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。 展开更多
关键词 信道状态信息反馈 多输入多输出 神经网络 近似矩阵乘法 聚类计算
在线阅读 下载PDF
Bidirectional position attention lightweight network for massive MIMO CSI feedback
18
作者 Li Jun Wang Yukai +3 位作者 Zhang Zhichen He Bo Zheng Wenjing Lin Fei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第5期1-11,共11页
In frequency division duplex(FDD)massive multiple-input multiple-output(MIMO)systems,a bidirectional positional attention network(BPANet)was proposed to address the high computational complexity and low accuracy of ex... In frequency division duplex(FDD)massive multiple-input multiple-output(MIMO)systems,a bidirectional positional attention network(BPANet)was proposed to address the high computational complexity and low accuracy of existing deep learning-based channel state information(CSI)feedback methods.Specifically,a bidirectional position attention module(BPAM)was designed in the BPANet to improve the network performance.The BPAM captures the distribution characteristics of the CSI matrix by integrating channel and spatial dimension information,thereby enhancing the feature representation of the CSI matrix.Furthermore,channel attention is decomposed into two one-dimensional(1D)feature encoding processes effectively reducing computational costs.Simulation results demonstrate that,compared with the existing representative method complex input lightweight neural network(CLNet),BPANet reduces computational complexity by an average of 19.4%and improves accuracy by an average of 7.1%.Additionally,it performs better in terms of running time delay and cosine similarity. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel state information(csi)feedback deep learning lightweight neural network bidirectional position attention module(BPAM)
原文传递
基于多尺度特征提取的轻量化大规模MIMO系统CSI反馈 被引量:1
19
作者 刘受清 朱正发 申滔 《无线电工程》 2025年第1期175-183,共9页
在频分双工(Frequency Division Duplex,FDD)模式的大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统中,针对资源有限的用户设备(User Equipment,UE)向基站(Base Station,BS)反馈信道状态信息(Channel State Information,C... 在频分双工(Frequency Division Duplex,FDD)模式的大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统中,针对资源有限的用户设备(User Equipment,UE)向基站(Base Station,BS)反馈信道状态信息(Channel State Information,CSI)反馈开销太大、反馈精度不足以及网络计算复杂度高的问题,提出一种基于深度可分离卷积和多尺度特征提取的轻量化CSI反馈方案。采用轻量的深度可分离卷积处理CSI,以降低压缩信息的损失,通过多尺度特征提取和残差学习进行恢复重建CSI。仿真结果表明,所提方案相对其他轻量化网络表现出较好的反馈精度。 展开更多
关键词 频分双工 大规模多输入多输出 深度可分离卷积 多尺度特征提取网络 轻量化 信道状态信息反馈
在线阅读 下载PDF
5G大规模MIMO节能模式CSI反馈增强方案研究
20
作者 张德坤 贾方 张欢庆 《通信电源技术》 2025年第11期188-190,共3页
为解决大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统的高功耗问题,基站采用动态通道关断节能方案。但当前信道状态信息(Channel State Information,CSI)反馈策略未适配通道关断状态,影响用户平均速率和节能效果。针对... 为解决大规模多输入多输出(Multiple Input Multiple Output,MIMO)系统的高功耗问题,基站采用动态通道关断节能方案。但当前信道状态信息(Channel State Information,CSI)反馈策略未适配通道关断状态,影响用户平均速率和节能效果。针对该问题,提出一种大规模MIMO系统节能模式CSI增强方案。通过定义大规模MIMO标准通道关断模式和设计增强CSI测量和反馈方案,自适应实现节能和非节能模式量化码本匹配,从而提升用户速率和节能效果。该方案在大规模MIMO系统仿真中展现出优越性能,为6G网络CSI反馈增强标准化提供理论与实践参考。 展开更多
关键词 大规模多输入多输出(MIMO) 通道关断节能 信道状态信息(csi)反馈增强
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部