As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion ...As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion method that considers anisotropy to improve the effectiveness of inversion accuracy and interpretation accuracy of data. This study is based on the 3D fi nite-diff erence forward modeling of axis anisotropy using the reciprocity theorem to calculate the Jacobian matrix by applying the search method to automatically search for the Lagrange operator. The aim is to establish inversion iteration equations to achieve the axis anisotropic Occam's 3D inversion of tensor CSAMT in data space. Further, we obtain an underground axis anisotropic 3D geoelectric model by inverting the impedance data of tensor CSAMT. Two synthetic data examples show that using the isotropic tensor CSAMT algorithm to directly invert data in anisotropic media can generate false anomalies, leading to incorrect geological interpretations. Meanwhile, the proposed anisotropic inversion algorithm can eff ectively improve the accuracy of data inversion in anisotropic media. Further, the inversion examples verify the eff ectiveness and stability of the algorithm.展开更多
Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activ...Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.展开更多
基金supported by Heilongjiang Province Basic Research Business Expenses for Universities Heilongjiang University Special Fund Project (Grant No. 2023-KYYWF-1494)the Natural Science Foundation of Jiangxi Province (Grant No. 20212BAB213023)。
文摘As geological exploration conditions become increasingly complex, meeting the requirements of precise geological exploration necessitates the development of a controlled-source audio magnetotelluric (CSAMT) inversion method that considers anisotropy to improve the effectiveness of inversion accuracy and interpretation accuracy of data. This study is based on the 3D fi nite-diff erence forward modeling of axis anisotropy using the reciprocity theorem to calculate the Jacobian matrix by applying the search method to automatically search for the Lagrange operator. The aim is to establish inversion iteration equations to achieve the axis anisotropic Occam's 3D inversion of tensor CSAMT in data space. Further, we obtain an underground axis anisotropic 3D geoelectric model by inverting the impedance data of tensor CSAMT. Two synthetic data examples show that using the isotropic tensor CSAMT algorithm to directly invert data in anisotropic media can generate false anomalies, leading to incorrect geological interpretations. Meanwhile, the proposed anisotropic inversion algorithm can eff ectively improve the accuracy of data inversion in anisotropic media. Further, the inversion examples verify the eff ectiveness and stability of the algorithm.
基金supported by the Project 42374170,XDA0430101.and 2022YFF0706200.
文摘Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.