期刊文献+
共找到11,632篇文章
< 1 2 250 >
每页显示 20 50 100
Exploring the potential and challenges of molecular-squeeze adsorption in sponge-like crystals
1
作者 Yujuan Zhou Jie Yang 《Chinese Chemical Letters》 2025年第6期9-10,共2页
Traditional desorption methods in porous sorbents rely heavily on energy-intensive processes such as heating,vacuum pumping,or inert gas purging[1].While effective,these approaches incur substantial energy and operati... Traditional desorption methods in porous sorbents rely heavily on energy-intensive processes such as heating,vacuum pumping,or inert gas purging[1].While effective,these approaches incur substantial energy and operational costs,particularly for hydrocarbons with high boiling points or strong host-vip interactions[2].This is the same case in the newly-developed macrocyclebased crystalline adsorbents,namely nonporous adaptive crystals(NACs).To address these challenges,a recent study published in Angewandte Chemie International Edition by Jie,Ma,and co-workers reported an innovative molecular-"squeeze"triggered desorption mechanism in NACs[3-5].Specifically,ethyl acetate(EA)triggers vip desorption without penetrating the crystal pores or voids.Instead,EA molecules interact with the crystal surface through supramolecular forces,causing the adaptive closure of voids and the subsequent release of vip molecules.Unlike conventional sponges that rely on mechanical squeeze to deform themselves in the bulk for vip release,these macrocycle crystals undergo structural deformation at the molecular level and condensed phase when exposed to vaporized molecules.Because of the similar behavior between sponges and such NACs,the authors name them as sponge-likemacrocyclecrystals. 展开更多
关键词 molecular squeeze adsorption crystalline adsorbentsnamely desorption methods sponge crystals nonporous adaptive crystals nacs porous sorbents inert gas purging
原文传递
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
2
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
在线阅读 下载PDF
Optically Reconfigurable Tamm Plasmonic Photonic Crystals for Visible Spectrum
3
作者 Kuan Liu Chuang Zheng +3 位作者 Shixin Gao Xiaoming Chen Shuang Zhang Tun Cao 《Engineering》 2025年第6期134-140,共7页
Tamm plasmon polaritons(TPPs)are localized photonic states at the interface between a metal layer and one-dimensional(1D)photonic crystal substrate.Unlike surface plasmon polaritons(SPPs),TPPs can be excited by both t... Tamm plasmon polaritons(TPPs)are localized photonic states at the interface between a metal layer and one-dimensional(1D)photonic crystal substrate.Unlike surface plasmon polaritons(SPPs),TPPs can be excited by both transverse magnetic and electric waves without requiring additional coupling optics.TPPs offer robust color filtering,making them ideal for applications such as complementary metal oxide semiconductor(CMOS)image detectors.However,obtaining a large-area,reversible,and reconfigurable filter remains challenging.This study demonstrates a dynamically reconfigurable reflective color filter by integrating an ultrathin antimony trisulfide(Sb_(2)S_(3))layer with Tamm plasmonic photonic crystals.Reconfigurable tuning was achieved by inducing Sb_(2)S_(3) crystallization and reamorphization via thermal and optical activation,respectively.The material exhibited good stability after multiple switching cycles.The reflectance spectrum can be tuned across the visible range,with a shift of approximately 50 nm by switching Sb_(2)S_(3) between its amorphous and crystalline phases.This phase transition is nonvolatile and substantially minimizes the energy consumption,enhancing efficiency for practical applications.Tamm plasmonic photonic crystals are low-cost and large-scale production,offering a platform for compact color display systems and customizable photonic crystal filters for realistic system integration. 展开更多
关键词 Tamm plasmon polaritons Photonic crystals Color display Phase change materials TUNABLE
在线阅读 下载PDF
Nucleation control for the growth of two-dimensional single crystals
4
作者 Jinxia Bai Chi Zhang +3 位作者 Fankai Zeng Jinzong Kou Jinhuan Wang Xiaozhi Xu 《Journal of Semiconductors》 2025年第9期10-18,共9页
The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-cryst... The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials. 展开更多
关键词 2D materials single crystals nucleation density nucleation position
在线阅读 下载PDF
Face-/Edge-Shared 3D Perovskitoid Single Crystals with Suppressed Ion Migration for Stable X-Ray Detector
5
作者 Zimin Zhang Xiaoli Wang +10 位作者 Huayang Li Dong Li Yang Zhang Nan Shen Xue-Feng Yu Yucheng Liu Shengzhong Liu Haomin Song Yanliang Liu Xingzhu Wang Shi Chen 《Nano-Micro Letters》 2025年第12期336-348,共13页
Although three-dimensional metal halide perovskites are promising candidates for direct X-ray detection,the ion migration of perovskites seriously affects the detector stability.Herein,face-/edge-shared 3D heterometal... Although three-dimensional metal halide perovskites are promising candidates for direct X-ray detection,the ion migration of perovskites seriously affects the detector stability.Herein,face-/edge-shared 3D heterometallic glycinate hybrid perovskitoid Pb_(2)CuGly_(2)X_(4)(Gly=-O_(2)C-CH_(2)-NH_(2);X=Cl,Br)single crystals(SCs),in which the adjacent lead halide layers are linked by large-sized Cu(Gly)_(2)pillars,are synthesized in water.The Cu(Gly)_(2)pillars in combination with face-/edge-shared inorganic skeleton are found able to synergistically suppress the ion migration,delivering a high ion migration activation energy(Ea)of 1.06 eV.The Pb_(2)CuGly_(2)Cl_(4)SC X-ray detector displays extremely low dark current drift of 1.20×10^(-9)nA mm^(-1)s^(-1)V^(-1)under high electric field(120 V mm^(-1))and continuous X-ray irradiation(2.86 Gy),and a high sensitivity of 9,250μC Gy^(-1)cm^(-2)is also achieved.More excitingly,the Pb_(2)CuGly_(2)Cl_(4)nanocrystal can be easily dispersed in water and directly blade-coated on thin-film transistor(TFT)array substrate,and the obtained Pb_(2)CuGly_(2)Cl_(4)-based TFT array detector offers an X-ray imaging capability with spatial resolution of 2.2 lp mm^(-1). 展开更多
关键词 3D perovskitoid Single crystals Suppressed ion migration High operating stability X-ray detector
在线阅读 下载PDF
Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
6
作者 Ming Sun Xiao-Fang Xu +2 位作者 Yun-Feng Shen Ya-Qing Chang Wen-Ji Zhou 《Chinese Physics B》 2025年第3期424-431,共8页
We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring... We study the topological states(TSs)of all-dielectric honeycomb valley photonic crystals(VPCs).Breaking the space inversion symmetry of the honeycomb lattice by varying the filling ratio of materials for circular ring dielectric columns in the unit cell,which triggers topological phase transitions and thus achieves topological edge states(TESs)and topological corner states(TCSs).The results demonstrate that this structure has efficient photon transmission characteristics and anti-scattering robustness.In particular,we have found that changing the type of edge splicing between VPCs with different topological properties produces a change in the frequency of TCSs,and then based on this phenomenon,we have used a new method of adjusting only the type of edge splicing of the structure to design a novel TCSs combiner that can integrate four TCSs with different frequencies.This work not only expands the variety and number of unexplored TCSs that may exist in a fixed photonic band gap and can be rationalized to be selectively excited in the fixed configuration.Our study provides a feasible pathway for the design of integrated optical devices in which multiple TSs coexist in a single photonic system. 展开更多
关键词 valley photonic crystals topological phase transitions topological edge states topological corner states COMBINER
原文传递
Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene
7
作者 Jingyu Chen Sha Wu +1 位作者 Yuhao Wang Jiong Zhou 《Chinese Chemical Letters》 2025年第4期205-210,共6页
The separation of alicyclic ketones and alicyclic alcohols is one of the challenges in the field of petrochemical industry. However, traditional separation methods suffer from excessive energy consumption,complicated ... The separation of alicyclic ketones and alicyclic alcohols is one of the challenges in the field of petrochemical industry. However, traditional separation methods suffer from excessive energy consumption,complicated operation, and unsatisfactory separation efficiency for substances with similar boiling points.Herein, we offer an innovative method for the separation of alicyclic ketones and alicyclic alcohols employing nonporous adaptive crystals(NACs) of perethylated pillar[5]arene(EtP5) and perethylated pillar[6]arene(Et P6). NACs of EtP5 cannot adsorb either alicyclic ketones or alicyclic alcohols because of the small cavity size of Et P5. By contrast, NACs of Et P6 can separate cyclopentanone from the vapor mixture of cyclopentanone/cyclopentanol(v:v = 1:1) and cyclohexanone from the vapor mixture of cyclohexanone/cyclohexanol(v:v = 1:1) with purities of 99.1% and 100%, respectively. Density functional theory calculations show that the selectivity comes from the thermodynamic stability of the newly formed crystal structure after adsorption of the preferred vip molecule. Moreover, NACs of Et P6 can be reused without losing selectivity and performance. 展开更多
关键词 Pillar[n]arenes Nonporous adaptive crystals Adsorptive separation Host-vip complexes Supramolecular chemistry
原文传递
Molecular tailoring towards two-dimensional organic crystals at the thickness limit
8
作者 Zhilei Zhang Yanan Sun +6 位作者 Xiaosong Shi Xiaozhe Yin Dawei Liu Erjing Wang Jie Liu Yuanyuan Hu Lang Jiang 《Chinese Chemical Letters》 2025年第9期292-298,共7页
Advances in controllable growth of ultra thin two-dimensional molecular crystals(2DMCs)or even monolayer molecular crystals(MMCs)propelled their application in high-performance,high-sensitivity,lowcontact-resistance o... Advances in controllable growth of ultra thin two-dimensional molecular crystals(2DMCs)or even monolayer molecular crystals(MMCs)propelled their application in high-performance,high-sensitivity,lowcontact-resistance optoelectronic devices.However,the rational molecular design strategies for materials prone to grow into ultrathin 2DMC or MMC have rarely been addressed.Here,systematically tailoring theπ-conjugation and alkyl chain types of asymmetric anthracene derivatives,2DMCs and even MMCs were obtained under the synergetic regulation of inter-and intralayer interactions.High-quality MMCs were obtained for SAP-C6 by traditional physical vapor transport technique(PVT),and corresponding organic field-effect transistors(OFETs)exhibited high mobility of 3.22 cm^(2)V^(-1)s^(-1).In addition,band-like charge transport with low activation energy was achieved by SAP-C6 MMC-OFETs.Furthermore,the SAPC6 MMC-based device exhibits excellent thermal stability,retaining~70%of its initial performance at 140℃in air,which is the first report on the thermal stability of MMC devices.This research highlights the potential of alkyl-substituted asymmetric molecules as a design strategy to achieve ultrathin 2DMC or MMC growth,and improve the mobility and thermal stability in OFETs. 展开更多
关键词 Asymmetric anthracene derivatives Monolayer molecular crystals(MMCs) Field-effect transistors Thermal stability Contact resistance
原文传递
Investigation of edge states variation in valley photonic crystals by modulating the refractive index of domain walls
9
作者 ZHANG Run ZHONG Xingli +2 位作者 LIN Zhongxi QIU Weibin SU Hui 《Optoelectronics Letters》 2025年第3期160-166,共7页
Realizing the valley Hall effect by breaking the spatial inversion symmetry of photonic systems has become a cutting-edge field of micro-nano-optics,since the valley degree of freedom was introduced into photonic syst... Realizing the valley Hall effect by breaking the spatial inversion symmetry of photonic systems has become a cutting-edge field of micro-nano-optics,since the valley degree of freedom was introduced into photonic system.Various novel devices based on the domain walls of the valley photonic crystals have also been demonstrated.In this article,we investigate the variation of edge states by the modulation of refractive index within the domain walls,and the geometric difference between the dielectric columns of the sublattices.Straight photonic crystal waveguides with three types of domain walls(bearded,zigzag,armchair)are constructed.Simulation results show that the creation of a double-edge state in the band diagram results in two windows of stable transmission in tunable bands.Our findings might have significant implications in the field of novel optical devices. 展开更多
关键词 modulation refractive index domain walls variation edge states breaking spatial inversion symmetry valley degree freedom photonic crystals geometric difference dielectric columns photonic systems
原文传递
Programmable array antenna based on nematic liquid crystals for the Ka-band
10
作者 WANG Qiang KE Junchen BAI Lin 《Journal of Southeast University(English Edition)》 2025年第1期78-83,共6页
A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a ph... A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication. 展开更多
关键词 array antenna nematic liquid crystals electronically beam scanning field programmable gate array(FPGA)
在线阅读 下载PDF
Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V_(5)S_(8)crystals
11
作者 Yaofeng Xie Senhao Lv +12 位作者 Qi Qi Guojing Hu Ke Zhu Zhen Zhao Guoyu Xian Yechao Han Ruwen Wang Chenyu Bai Lihong Bao Xiao Lin Hui Guo Haitao Yang Hong-Jun Gao 《Chinese Physics B》 2025年第8期435-442,共8页
Vanadium-based transition metal chalcogenides VmXn(X=S,Se,Te)with their distinctive quantum effects,tunable magnetism,spin-orbit coupling,and high carrier mobility are a valuable platform to explore the interplay betw... Vanadium-based transition metal chalcogenides VmXn(X=S,Se,Te)with their distinctive quantum effects,tunable magnetism,spin-orbit coupling,and high carrier mobility are a valuable platform to explore the interplay between magnetism and electronic correlations,especially with tunable structural phases and magnetic properties through stoichiometric variations,making them ideal candidates for advanced device applications.Here,we report the synthesis of high-quality V_(5+x)S_(8)single crystals with different concentrations of self-intercalated vanadium.V_(5+x)S_(8)crystals show an antiferromagnetic behavior and a spin-flop-like transition below TN of 30.6 K.The high-quality V_(5+x)S_(8)single crystals exhibit a large negative magnetoresistance of 12.3%at 2 K.Interestingly,V_(5+x)S_(8)crystals show an obvious low-temperature resistance upturn that gradually levels off with the increasing magnetic field,attributed to the Kondo effect arising from the interaction between conduction electrons and embedded vanadium magnetic impurities.With increasing V doping,the antiferromagnetic interactions intensify,weakening the coupling between the local moments and conduction electrons,which in turn lowers the Kondo temperature(TK).Furthermore,the anomalous Hall effect is observed in V5.73S8,with an anomalous Hall conductivity(AHC)of 50.46 W^(-1)·cm^(-1)and anomalous Hall angle of 0.73%at 2 K.Our findings offer valuable insights into the mechanisms of the Kondo effect and anomalous Hall effect in self-intercalated transition metal chalcogenides with complex magnetism and electronic correlation effects. 展开更多
关键词 V_(5+x)S_(8)crystals ANTIFERROMAGNETIC negative magnetoresistance Kondo effect anomalous Hall effect
原文传递
Performance and electromagnetic mechanism of radar-and infraredcompatible stealth materials based on photonic crystals 被引量:2
12
作者 Yanming Liu Xuan Yang +3 位作者 Lixin Xuan Weiwei Men Xiao Wu Yuping Duan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期710-717,共8页
Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening ... Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research. 展开更多
关键词 microwave absorption infrared stealth photonic crystal compatible stealth
在线阅读 下载PDF
Optimizing the generation of second harmonic optical vortices from nonlinear photonic crystals
13
作者 LIU Shiqiang ZHANG Xinyu +4 位作者 CHEN Yan LI Shifeng ZHAO Gang ZHU Shining HU Xiaopeng 《物理学进展》 北大核心 2025年第4期161-168,共8页
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex... The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs. 展开更多
关键词 optical vortex nonlinear photonic crystal second harmonic generation orbital angular momentum
在线阅读 下载PDF
Optical memory behavior of MoS_(2) nanoflakes doped liquid crystals hybrid
14
作者 GONG Xiaohui ZHANG Hao +1 位作者 YANG Dongfang LIU Yang 《液晶与显示》 北大核心 2025年第5期665-673,共9页
The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variet... The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the vip in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications. 展开更多
关键词 optical memory behavior MoS_(2)nanoflake liquid crystal
在线阅读 下载PDF
Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction and applications on spin-wave devices
15
作者 Chuhan Zhou Xiaotian Jiao +3 位作者 Jiaxi Xu Zhaonian Jin Lin Chen Zhikuo Tao 《Chinese Physics B》 2025年第2期431-436,共6页
Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characte... Dispersion characteristics of magnonic crystals have attracted considerable attention because of the potential applications for spin-wave devices.In this work,we investigated the strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii–Moriya interaction(DMI)and discussed the potential applications in spin-wave devices.Here,the ground states and stabilities of the magnonic crystals were investigated.Then,the strain-manipulated dispersion characteristics of the magnonic crystals based on domains and skyrmions were studied.The simulation results indicated that,the applied strain could manipulate the band widths and the positions of the allowed frequency bands.Finally,the realization of magnonic crystal heterojunctions and potential applications in spin-wave devices,such as filters,diodes,and transistors based on strain-manipulated magnonic crystals were proposed.Our research provides a theoretical foundation for designing tunable spin-wave devices based on strain-manipulated magnonic crystals with DMI. 展开更多
关键词 magnonic crystal spin wave dispersion relation SKYRMION DOMAIN
原文传递
Controlling the extent of nanoparticle occlusion within calcite crystals via surface chemistry engineering
16
作者 Xia Sun Zixian Liang +6 位作者 Jiahao Zhang Boxiang Peng Bing Yu Pei Liu Biao Xiong Jizhuang Wang Yin Ning 《Chinese Chemical Letters》 2025年第9期367-371,共5页
Directly occluding polymer nanoparticles into growing host crystals provides a versatile pathway for synthe sizing polymer-inorganic composite crystals,where vip nanoparticles are distributed within the crystal matr... Directly occluding polymer nanoparticles into growing host crystals provides a versatile pathway for synthe sizing polymer-inorganic composite crystals,where vip nanoparticles are distributed within the crystal matrix.However,systematically controlling the extent of nanoparticle occlusion within a host crystal remains a significant challenge.In this study,we employ a one-step,soap-free emulsion polymerization method to synthesize polyethyleneimine-functionalized poly(tert-butyl methacrylate)(PtBMA/PEI)nanoparticles.These cationic nanoparticles are subsequently modified using formaldehyde to systematically tune the content of surface amine group via the Eschweiler-Clarke reaction.This approach yields a series of model nanoparticles that allow us to investigate how surface chemistry influences the extent of nanoparticle occlusion within calcite crystals.Our findings reveal that the extent of nanoparticle occlusion within calcite crystals is proportional to the surface amine group content.This study offers a new design rule for creating composite crystals with tailored compositions through a nanoparticle occlusion strategy. 展开更多
关键词 Nanoparticle occlusion Composite crystal Cationic nanoparticle Surface chemistry NANOCOMPOSITE
原文传递
Concurrent generation and amplification of longitudinal and bending waves using defective phononic crystals
17
作者 S.H.JO 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期269-288,共20页
Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic se... Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic sensors,and piezoelectric energy harvesters,typically operating under the assumption of an external elastic wave incidence.Recently,a novel approach that uses defective PnCs as ultrasonic actuators to generate amplified waves has emerged.However,the existing studies are limited to the generation of either longitudinal or bending waves,with no research addressing the concurrent generation of both.Hence,this paper proposes a straightforward methodology for the concurrent generation and amplification of both wave types utilizing defect modes at independent defect-band frequencies.Bimorph piezoelectric elements are attached to the defect,with each element connected to independent external voltage sources.By precisely adjusting the magnitude and temporal phase differences between the voltage sources,concurrently amplified wave generation is achieved.The paper highlights the advantages of the proposed analytical model.This model is both computationally time-efficient and accurate,in comparison with the COMSOL simulation results.For instance,in case studies,the analytical model reduces the computational time from one hour to mere seconds,while maintaining acceptable error rates of 1%in peak frequencies.This concurrent wave-generation methodology opens new avenues for applications in rotating machinery fault diagnosis,structural health monitoring,and medical imaging. 展开更多
关键词 phononic crystal(PnC) defect concurrent generation piezoelectric ultrasonic actuator
在线阅读 下载PDF
A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance
18
作者 Yong Fan Jinfeng Nie +7 位作者 Zhigang Ding Yujing Zhang Xiang Chen Wei Liu Sen Yang Sida Liu Xiangfa Liu Yonghao Zhao 《Journal of Materials Science & Technology》 2025年第1期190-203,共14页
Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current method... Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties. 展开更多
关键词 Multi-component borides First-principles calculations Crystal growth Mechanical properties Oxidation behavior
原文传递
Bulk modulus of molecular crystals
19
作者 Xudong Jiang Yajie Wang +1 位作者 Kuo Li Haiyan Zheng 《Chinese Physics B》 2025年第6期1-10,共10页
Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and ... Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and Vinet EOS. Bulk modulus reflects the intermolecular interaction inside molecular crystals, making it useful for researchers to design novel high pressure materials. This review systematically examines bulk moduli of various molecular crystals, including rare-gas solids, di-atom and triplet-atom molecules, saturated organic molecules, and aromatic organic crystals. Comparisons with ionic crystals are presented, along with an analysis of connections between bulk modulus and crystal structures. 展开更多
关键词 high pressure bulk modulus molecular crystal intermolecular interaction
原文传递
Revisit the Gibbs-Thomson Equation Fitting of Poly(butylene succinate)Based on Oligomer Extended-Chain Crystals
20
作者 Na Li Yu-Pei Tian +2 位作者 Tian-Yu Wu Qiong Zhou Hai-Mu Ye 《Chinese Journal of Polymer Science》 2025年第2期392-398,共7页
The equilibrium melting point(T_(m)^(0))is a crucial thermodynamic parameter for characterizing the crystallization and melting behavior of semi-crystalline polymers.However,the direct measurement of T_(m)^(0) poses a... The equilibrium melting point(T_(m)^(0))is a crucial thermodynamic parameter for characterizing the crystallization and melting behavior of semi-crystalline polymers.However,the direct measurement of T_(m)^(0) poses a significant challenge because of the difficulty in physically fabricating fully-extended chain crystals of high-molecular-weight polymers.Therefore,various extrapolation equations for T_(m)^(0) have been proposed that utilize the thermal properties of ordinary folded-chain lamellae.Among these,the Gibbs-Thomson equation is one of the most commonly employed for modeling.Despite its widespread use,there are notable variations in the T_(m)^(0) values obtained by different research groups,even when based on similar samples.This raises questions about the validity and accuracy of using the Gibbs-Thomson equation to linearly extrapolate T_(m)^(0).In this study,we prepared a series of oligomer extended-chain crystals(ECCs)of poly(butylene succinate)(PBS)and used their properties for Gibbs-Thomson fitting.The results reveal a perfect linear relationship,with an extrapolated T_(m)^(0) value of 136.08℃.The basal surface free energy of the oligomer ECCs was calculated as 0.084 J/m^(2),which is approximately twice that of folded-chain lamellae.This difference is attributed to the aggregation of highly mobile free tails on the crystal surface.The two structural features of oligomer ECCs—large thickness and fixed surface—better fulfill the conditions for applying the Gibbs-Thomson equation,ensuring its validity and accuracy.Therefore,we believe that the Gibbs-Thomson fit can produce reliable results when sufficient high-quality data are used. 展开更多
关键词 Equilibrium melting point Extended-chain crystal Gibbs-Thomson equation Inclusion complex
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部