CrN coatings are also employed to protect structural materials in nuclear power plants.It should be noted that the preparation process utilizing physical vapor deposition(PVD)techniques inevitably entails certain defe...CrN coatings are also employed to protect structural materials in nuclear power plants.It should be noted that the preparation process utilizing physical vapor deposition(PVD)techniques inevitably entails certain defects.Such a phenomenon will affect the protective properties of CrN coatings.In this study,low-energy laser shock peening(LE-LSP)with varying energies was employed for the post-treatment of CrN coatings.The effects of different laser energy LE-LSP treatments on the surface morphology,crystal structure and fretting wear properties of CrN coatings were investigated.The results revealed that the surface of the CrN coatings subjected to LE-LSP underwent significant plastic deformation and displayed a regular texture structure.The surface roughness and Vickers hardness of the CrN coatings exhibit a significant increase.Under a laser energy of 150 mJ,the surface hardness exhibits a maximum increase of 2.35 times.The residual stress of CrN coatings diminishes with the augmentation of laser energy due to the formation of surface cracks.Following LE-LSP treatment,the columnar crystal structure of the CrN coating was disrupted and fragmented into fine grains due to the impact force.As the laser energy augments,the fragmented CrN grains undergo further compaction.During fretting wear,all specimens were in the gross slip regime.The wear mechanism of the CrN coating,120 and 150 mJ specimens are primarily dominated by abrasive wear,and accompanied by oxidative wear.For specimens treated with 30,60 and 90 mJ,the predominant wear mechanisms are mainly peeling and abrasive wear,and accompanied by oxidative wear.Both the wear area and wear volume initially increase and then decrease as the laser energy increases.The 150 mJ specimen exhibited the smallest wear area and wear volume of all tested specimens.The wear volume was reduced by 76.32%when compared to that of the CrN coating.This study complements the existing research on PVD/LSP composite strengthening techniques.Introduces a novel post-treatment methodology for PVD coatings.Provides certain theoretical support for subsequent PVD/LSP composite strengthening.展开更多
基金Supported by National Key R&D Projects(Grant No.2022YFB3401900)Sichuan Provincial Science and Technology Projects(Grant No.2022JDJQ0019)Fundamental Research Funds for the Central University(Grant No.2682024GF004).
文摘CrN coatings are also employed to protect structural materials in nuclear power plants.It should be noted that the preparation process utilizing physical vapor deposition(PVD)techniques inevitably entails certain defects.Such a phenomenon will affect the protective properties of CrN coatings.In this study,low-energy laser shock peening(LE-LSP)with varying energies was employed for the post-treatment of CrN coatings.The effects of different laser energy LE-LSP treatments on the surface morphology,crystal structure and fretting wear properties of CrN coatings were investigated.The results revealed that the surface of the CrN coatings subjected to LE-LSP underwent significant plastic deformation and displayed a regular texture structure.The surface roughness and Vickers hardness of the CrN coatings exhibit a significant increase.Under a laser energy of 150 mJ,the surface hardness exhibits a maximum increase of 2.35 times.The residual stress of CrN coatings diminishes with the augmentation of laser energy due to the formation of surface cracks.Following LE-LSP treatment,the columnar crystal structure of the CrN coating was disrupted and fragmented into fine grains due to the impact force.As the laser energy augments,the fragmented CrN grains undergo further compaction.During fretting wear,all specimens were in the gross slip regime.The wear mechanism of the CrN coating,120 and 150 mJ specimens are primarily dominated by abrasive wear,and accompanied by oxidative wear.For specimens treated with 30,60 and 90 mJ,the predominant wear mechanisms are mainly peeling and abrasive wear,and accompanied by oxidative wear.Both the wear area and wear volume initially increase and then decrease as the laser energy increases.The 150 mJ specimen exhibited the smallest wear area and wear volume of all tested specimens.The wear volume was reduced by 76.32%when compared to that of the CrN coating.This study complements the existing research on PVD/LSP composite strengthening techniques.Introduces a novel post-treatment methodology for PVD coatings.Provides certain theoretical support for subsequent PVD/LSP composite strengthening.