The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field ...The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field approximation(MFA),where the time average of the modulus of the mean-field is defined as the order parameter.Here,we further study the phase fluctuations of oscillators from the mean-field using the eigen microstate theory(EMT),which was recently developed.The synchronization of phase fluctuations is identified by the condensation and criticality of eigen microstates with finite eigenvalues,which follow the finite-size scaling with the same critical exponents as those of the MFA in the critical regime.Then,we obtain the complete critical behaviors of phase oscillators in the Kuramoto model.We anticipate that the critical behaviors of general phase oscillators can be investigated by using the EMT and different critical exponents from those of the MFA will be obtained.展开更多
The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-fail...The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.展开更多
Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that lever...Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that leverages integral criticality benchmark experiments to constrain the PFNS data is introduced.The measured central values of the PFNS are perturbed by constructing a covariance matrix.The PFNS are sampled using two types of covariance matrices,either generated with an assumed correlation matrix and incorporating experimental uncertainties or derived directly from experimental reports.The joint Monte Carlo transport code is employed to perform transport simulations on five criticality benchmark assemblies by utilizing perturbed PFNS data.Extensive simulations result in an optimized PFNS that shows improved agreement with the integral criticality benchmark experiments.This study introduces a novel approach for optimizing differential experimental data through integral experiments,particularly when a covariance matrix is not provided.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this...Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.展开更多
Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearit...Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.展开更多
The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-...The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-technique. The internal information factors, such as collisions and congestion of switchboards, routers and servers, influence on a network reliability and safety (besides of hardware and software reliability and external extreme factors). The means and features of Failures Modes and Effects (Critical) Analysis (FME(C)A) for reliability and criticality analysis of corporate computer networks (CCN) are considered. The examples of FME(C)A-Technique for structured cable system (SCS) is given. We also discuss measures that can be used for criticality analysis and possible means of criticality reduction. Finally, we describe a technique and basic principles of dependable development and deployment of computer networks that are based on results of FMECA analysis and procedures of optimization choice of means for fault-tolerance ensuring.展开更多
The high-temperature reactor pebble-bed mod-ule(HTR-PM)is a modular high-temperature gas-cooled reactor demonstration power plant.Its first criticality experiment is scheduled for the latter half of 2021.Before perfor...The high-temperature reactor pebble-bed mod-ule(HTR-PM)is a modular high-temperature gas-cooled reactor demonstration power plant.Its first criticality experiment is scheduled for the latter half of 2021.Before performing the first criticality experiment,a prediction calculation was performed using PANGU code.This paper presents the calculation details for predicting the HTR-PM first criticality using PANGU,including the input model and parameters,numerical results,and uncertainty analysis.The accuracy of the PANGU code was demonstrated by comparing it with the high-fidelity Monte Carlo solution,using the same input configurations.It should be noted that k eff can be significantly affected by uncertainties in nuclear data and certain input parameters,making the criticality calculation challenge.Finally,the PANGU is used to pre-dict the critical loading height of the HTR-PM first criti-cality under design conditions,which will be evaluated in the upcoming experiment later this year.展开更多
Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate...Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate the criticality computing performance of these newly released evaluated nuclear libraries.In this study,we used the NJOY2016 code to generate ACE format libraries based on the latest neutron data libraries(including CENDL-3.2,JEFF3.3,ENDF/B-VIII.0,and JENDL4.0).The MCNP code was used to conduct a detailed analysis of fission nuclides,including^(235)U,^(233)U,and^(239)Pu,in different evaluated nuclear data libraries based on 100 benchmarks.The criticality calculation performance of each library was evaluated using three statistical parameters:δk/σ,χ^(2),and<|Δ|>.Analysis of theδk/σparameter showed that CENDL-3.1 and JENDL-4.0 both had>10 benchmarks that exceeded 3r,whereas CENDL3.2,ENDFB-VIII.0,and JEFF-3.3 had,7,5,and 4 benchmarks,respectively,exceeding 3r.The ENDF/B-VII.1 library performed best,with only two benchmarks exceeding 3r.Compared to CENDL-3.1,CENDL-3.2 offers an improvement in criticality calculations.Compared to the JEFF-3.3 and ENDF/B-VIII.0 libraries,CENDL3.2 performs better in the calculation of the^(233)U assemblies,but it performs poorly in the pusl11 series case calculation of the^(239)Pu assemblies,and thus further improvement is needed.展开更多
A method which integrates expert evaluation method and support vector machine(SVM) method is introduced for failure mode criticality analysis(FMCA) about the gearbox device. An expert evaluation standard is built by u...A method which integrates expert evaluation method and support vector machine(SVM) method is introduced for failure mode criticality analysis(FMCA) about the gearbox device. An expert evaluation standard is built by using expert evaluation method. The experts make scores about the gearbox failure mode. In order to overcome the subjectivity of expert evaluation method, we use SVM method to make a comprehensive prediction about the scores. According to the comprehensive prediction evaluation results, the FMCA of the gearbox device can be obtained. The analysis shows that the method used in this paper not only can effectively solve the problem which is unable to get specific failure rate in the qualitative analysis, but also can solve the problem which needs lots of data in the quantitative analysis.展开更多
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an expo...In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.展开更多
The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we int...The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on th...A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics.展开更多
The critical size of a finite homogenous slab is investigated for one-speed neutrons using the alternative phase function(AG, Anli-Gungor) in place of the scattering function of the transport equation. First of all, t...The critical size of a finite homogenous slab is investigated for one-speed neutrons using the alternative phase function(AG, Anli-Gungor) in place of the scattering function of the transport equation. First of all, the neutron angular flux expanded in terms of the Chebyshev polynomials of second kind(UN approximation) together with the AG phase function is applied to the transport equation to obtain a criticality condition for the system.Then, using various values of the scattering parameters, the numerical results for the critical half-thickness of the slab are calculated and they are tabulated in the tables together with the ones obtained from the conventional spherical harmonic(PN) method for comparison. They can be said to be in good accordance with each other.展开更多
We study the criticality in excitatory-inhibitory networks consisting of excitable elements. We investigate the effects of the inhibitory strength using both numerical simulations and theoretical analysis. We show tha...We study the criticality in excitatory-inhibitory networks consisting of excitable elements. We investigate the effects of the inhibitory strength using both numerical simulations and theoretical analysis. We show that the inhibitory strength cannot affect the critical point. The dynamic range is decreased as the inhibitory strength increases.To simulate of decreasing the efficacy of excitation and inhibition which was studied in experiments, we remove excitatory or inhibitory nodes, delete excitatory or inhibitory links, and weaken excitatory or inhibitory coupling strength in critical excitatory-inhibitory network. Decreasing the excitation, the change of the dynamic range is most dramatic as the same as previous experimental results. However, decreasing inhibition has no effect on the criticality in excitatory-inhibitory network.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-retu...The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-return random-walk process in a one-dimensional lattice. In order to understand the reason of variant exponents for the power-law distributions in different self-organized critical systems, we introduce the correlations among evolution steps. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. It is found that the longer the correlation length, the smaller values of the exponents for the power-law distributions.展开更多
The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is...The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: the complexity and self organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes . Starting from this cognizance the author proposes eight major themes and the methodology of researches on the complexity and self organized criticality of the solid earth system.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12135003,71731002,and 12471141)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20231179)+1 种基金the China Postdoctoral Science Foundation-Tianjin Joint Support Program(Grant No.2023T001TJ)the Tianjin Education Commission scientific Research Project(Grant No.2023SK070)。
文摘The Kuramoto model is one of the most profound and classical models of coupled phase oscillators.Because of the global couplings between oscillators,its precise critical exponents can be obtained using the mean-field approximation(MFA),where the time average of the modulus of the mean-field is defined as the order parameter.Here,we further study the phase fluctuations of oscillators from the mean-field using the eigen microstate theory(EMT),which was recently developed.The synchronization of phase fluctuations is identified by the condensation and criticality of eigen microstates with finite eigenvalues,which follow the finite-size scaling with the same critical exponents as those of the MFA in the critical regime.Then,we obtain the complete critical behaviors of phase oscillators in the Kuramoto model.We anticipate that the critical behaviors of general phase oscillators can be investigated by using the EMT and different critical exponents from those of the MFA will be obtained.
文摘The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.
基金supported by the National Natural Science Foundation of China(No.12347126)。
文摘Prompt fission neutron spectra(PFNS)have a significant role in nuclear science and technology.In this study,the PFNS for^(239)Pu are evaluated using both differential and integral experimental data.A method that leverages integral criticality benchmark experiments to constrain the PFNS data is introduced.The measured central values of the PFNS are perturbed by constructing a covariance matrix.The PFNS are sampled using two types of covariance matrices,either generated with an assumed correlation matrix and incorporating experimental uncertainties or derived directly from experimental reports.The joint Monte Carlo transport code is employed to perform transport simulations on five criticality benchmark assemblies by utilizing perturbed PFNS data.Extensive simulations result in an optimized PFNS that shows improved agreement with the integral criticality benchmark experiments.This study introduces a novel approach for optimizing differential experimental data through integral experiments,particularly when a covariance matrix is not provided.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
基金supported by the the National Natural Science Foundation of China(Grant Nos.12175015 for W.G.and 12174387 for L.Z.)the Chinese Academy of Sciences (Grant Nos.YSBR-057 and JZHKYPT-2021-08 for L.Z.)+1 种基金the Innovative Program for Quantum Science and Technology (Grant No.2021ZD0302600 for L.Z.)the start-up funding of Westlake University and the China Postdoctoral Science Foundation (Grant No.2024M752898 for Z.W.and Z.Y.)。
文摘Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12204405, 21873033, and 22273029)the Yunnan Fundamental Research Project (Grant Nos. 202301AT070108 and 202401AW070005)
文摘Coupling of quantum-dot circuits to microwave photons enables us to investigate photon-assisted quantum transport.Here,we revisit this typical circuit quantum electrodynamical setup by introducing the Kerr nonlinearity of photons.By exploiting quantum critical behavior,we propose a powerful scheme to control the power-harvesting efficiency in the microwave regime,where the driven-dissipative optical system acts as an energy pump.It drives electron transport against a load in the quantum-dot circuit.The energy transfer and,consequently,the harvesting efficiency are enhanced near the critical point.As the critical point moves towards to low input power,high efficiency within experimental parameters is achieved.Our results complement fundamental studies of photon-to-electron conversion at the nanoscale and provide practical guidance for designs of integrated photoelectric devices through quantum criticality.
文摘The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-technique. The internal information factors, such as collisions and congestion of switchboards, routers and servers, influence on a network reliability and safety (besides of hardware and software reliability and external extreme factors). The means and features of Failures Modes and Effects (Critical) Analysis (FME(C)A) for reliability and criticality analysis of corporate computer networks (CCN) are considered. The examples of FME(C)A-Technique for structured cable system (SCS) is given. We also discuss measures that can be used for criticality analysis and possible means of criticality reduction. Finally, we describe a technique and basic principles of dependable development and deployment of computer networks that are based on results of FMECA analysis and procedures of optimization choice of means for fault-tolerance ensuring.
基金supported by the National S&T Major Project of China(Nos.ZX0690,ZX06902)the CNNC Youth Research Project.
文摘The high-temperature reactor pebble-bed mod-ule(HTR-PM)is a modular high-temperature gas-cooled reactor demonstration power plant.Its first criticality experiment is scheduled for the latter half of 2021.Before performing the first criticality experiment,a prediction calculation was performed using PANGU code.This paper presents the calculation details for predicting the HTR-PM first criticality using PANGU,including the input model and parameters,numerical results,and uncertainty analysis.The accuracy of the PANGU code was demonstrated by comparing it with the high-fidelity Monte Carlo solution,using the same input configurations.It should be noted that k eff can be significantly affected by uncertainties in nuclear data and certain input parameters,making the criticality calculation challenge.Finally,the PANGU is used to pre-dict the critical loading height of the HTR-PM first criti-cality under design conditions,which will be evaluated in the upcoming experiment later this year.
基金supported by the National Natural Science Foundation of China(No.11875128).
文摘Nuclear data are the cornerstones of reactor physics and shielding calculations.Recently,China released CENDL-3.2 in 2020,and the US released ENDF/B-VIII.0 in 2018.Therefore,it is necessary to comprehensively evaluate the criticality computing performance of these newly released evaluated nuclear libraries.In this study,we used the NJOY2016 code to generate ACE format libraries based on the latest neutron data libraries(including CENDL-3.2,JEFF3.3,ENDF/B-VIII.0,and JENDL4.0).The MCNP code was used to conduct a detailed analysis of fission nuclides,including^(235)U,^(233)U,and^(239)Pu,in different evaluated nuclear data libraries based on 100 benchmarks.The criticality calculation performance of each library was evaluated using three statistical parameters:δk/σ,χ^(2),and<|Δ|>.Analysis of theδk/σparameter showed that CENDL-3.1 and JENDL-4.0 both had>10 benchmarks that exceeded 3r,whereas CENDL3.2,ENDFB-VIII.0,and JEFF-3.3 had,7,5,and 4 benchmarks,respectively,exceeding 3r.The ENDF/B-VII.1 library performed best,with only two benchmarks exceeding 3r.Compared to CENDL-3.1,CENDL-3.2 offers an improvement in criticality calculations.Compared to the JEFF-3.3 and ENDF/B-VIII.0 libraries,CENDL3.2 performs better in the calculation of the^(233)U assemblies,but it performs poorly in the pusl11 series case calculation of the^(239)Pu assemblies,and thus further improvement is needed.
基金the National Natural Science Foundation of China(No.11272070)the Natural Science Foundation of Liaoning Province(No.2014028020)+1 种基金the Dalian Science and Technology Project(No.2015A11GX026)the Educational Commission Project of Liaoning Province(No.L2013182)
文摘A method which integrates expert evaluation method and support vector machine(SVM) method is introduced for failure mode criticality analysis(FMCA) about the gearbox device. An expert evaluation standard is built by using expert evaluation method. The experts make scores about the gearbox failure mode. In order to overcome the subjectivity of expert evaluation method, we use SVM method to make a comprehensive prediction about the scores. According to the comprehensive prediction evaluation results, the FMCA of the gearbox device can be obtained. The analysis shows that the method used in this paper not only can effectively solve the problem which is unable to get specific failure rate in the qualitative analysis, but also can solve the problem which needs lots of data in the quantitative analysis.
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.40730842the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-201the Postdoctoral Special Fund for the Innovation Program of the Shandong Province
文摘In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.10675060
文摘The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金Supported by the National Natural Science Foundation of China under Grant No 11275061the National Magnetic Confinement Fusion Science Program under Grant No 2014GB108002
文摘A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics.
文摘The critical size of a finite homogenous slab is investigated for one-speed neutrons using the alternative phase function(AG, Anli-Gungor) in place of the scattering function of the transport equation. First of all, the neutron angular flux expanded in terms of the Chebyshev polynomials of second kind(UN approximation) together with the AG phase function is applied to the transport equation to obtain a criticality condition for the system.Then, using various values of the scattering parameters, the numerical results for the critical half-thickness of the slab are calculated and they are tabulated in the tables together with the ones obtained from the conventional spherical harmonic(PN) method for comparison. They can be said to be in good accordance with each other.
基金Supported by National Natural Science Foundation of China under Grants No.11675096Fundamental Research Funds for the Central Universities under Grant No.GK201702001FPALAB-SNNU under Grant No.16QNGG007
文摘We study the criticality in excitatory-inhibitory networks consisting of excitable elements. We investigate the effects of the inhibitory strength using both numerical simulations and theoretical analysis. We show that the inhibitory strength cannot affect the critical point. The dynamic range is decreased as the inhibitory strength increases.To simulate of decreasing the efficacy of excitation and inhibition which was studied in experiments, we remove excitatory or inhibitory nodes, delete excitatory or inhibitory links, and weaken excitatory or inhibitory coupling strength in critical excitatory-inhibitory network. Decreasing the excitation, the change of the dynamic range is most dramatic as the same as previous experimental results. However, decreasing inhibition has no effect on the criticality in excitatory-inhibitory network.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.10635020 and 10775057by the Ministry of Education of China under Grant Nos.306022,IRT0624by the Programme of Introducing Talents of Discipline to Universities under Grant No.B08033
文摘The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-return random-walk process in a one-dimensional lattice. In order to understand the reason of variant exponents for the power-law distributions in different self-organized critical systems, we introduce the correlations among evolution steps. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. It is found that the longer the correlation length, the smaller values of the exponents for the power-law distributions.
文摘The author puts forward the proposition of Complexity and Self Organized Criticality of Solid Earth System in the light of: (1) the science of complexity studies the mechanisms of emergence of complexity and is the science of the 21st century, (2) the study of complexity of the earth system would be one of the growing points occupying a strategic position in the development of geosciences in the 21st century. By the proposition we try to cogitate from a new viewpoint the ancient yet ever new solid earth system. The author abstracts the fundamental problem of the solid earth system from the essence of the generalized geological systems and processes which reads: the complexity and self organized criticality of the global nature, structure and dynamical behavior of the whole solid earth system emerging from the multiple coupling and superposition of non linear interactions among the multicomponents of the earths material and the multiple generalized geological (geological, geophysical, and geochemical) processes . Starting from this cognizance the author proposes eight major themes and the methodology of researches on the complexity and self organized criticality of the solid earth system.