Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal defo...Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.展开更多
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h...The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.展开更多
In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compar...In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.展开更多
为满足越来越多的脑卒中患者辅助行走和康复训练的需要,设计了一款下肢外骨骼机器人模型,采用D-H参数法建立踝关节、膝关节、髋关节坐标系,推演出步态周期内的坐标方程。为了安全起见,要求脑卒中患者步行速度慢且步长短,利用CoG(Center ...为满足越来越多的脑卒中患者辅助行走和康复训练的需要,设计了一款下肢外骨骼机器人模型,采用D-H参数法建立踝关节、膝关节、髋关节坐标系,推演出步态周期内的坐标方程。为了安全起见,要求脑卒中患者步行速度慢且步长短,利用CoG(Center of Gravity,重心地面投影点)作为步态规划中的稳定性判断依据,并用Robotics Toolbox for Matlab仿真,结果表明:下肢外骨骼康复机器人在康复训练过程中各关节具有连续且稳定的步态轨迹,为后续脑卒中患者使用的下肢外骨骼康复机器人样机研制提供了必要的理论依据。展开更多
基金supported by the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-QN-0466)the National Natural Science Foundation of China(Nos.52305421 and 52175363)+1 种基金the General Research Fund of Hong Kong(No.15223520)the project No.1-ZE1W from the Hong Kong Polytechnic University.
文摘Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.
文摘The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.
基金supported in part by the National Natural Science Foundation of China under Grant 52077142the Research Foundation of Zhengzhou Electric Power College under Grant ZEPCKY2024-01 and ZEPCKYRC01。
文摘In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.
文摘为满足越来越多的脑卒中患者辅助行走和康复训练的需要,设计了一款下肢外骨骼机器人模型,采用D-H参数法建立踝关节、膝关节、髋关节坐标系,推演出步态周期内的坐标方程。为了安全起见,要求脑卒中患者步行速度慢且步长短,利用CoG(Center of Gravity,重心地面投影点)作为步态规划中的稳定性判断依据,并用Robotics Toolbox for Matlab仿真,结果表明:下肢外骨骼康复机器人在康复训练过程中各关节具有连续且稳定的步态轨迹,为后续脑卒中患者使用的下肢外骨骼康复机器人样机研制提供了必要的理论依据。