期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Z-scheme heterojunction of SnS_(2)-decorated 3DOM-SrTiO_(3) for selectively photocatalytic CO_(2) reduction into CH4 被引量:3
1
作者 Wenjie He Xingxing Wu +6 位作者 Yifei Li Jing Xiong Zhiling Tang Yuechang Wei Zhen Zhao Xiao Zhang Jian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2774-2778,共5页
The rapid recombination of photoinduced electron-hole pairs as well as the deficiency of high-energy carriers restricted the redox ability and products selectivity.Herein,the heterojunction of SnS_(2)-deco rated three... The rapid recombination of photoinduced electron-hole pairs as well as the deficiency of high-energy carriers restricted the redox ability and products selectivity.Herein,the heterojunction of SnS_(2)-deco rated three-dimensional ordered macropores(3DOM)-SrTiO_(3) catalysts were in-situ constructed to provide transmit channel for high-energy electron transmission.The suitable band edges of SnS_(2) and SrTiO_(3) contribute to the Z-scheme transfer of photogenerated carrier.The 3DOM structure of SrTiO_(3)-based catalyst possesses the slow light effect for enhancing light adsorption efficiency,and the surface alkalis strontium is benefit to the boosting adsorption for CO_(2).The in-situ introduced SnS_(2) decorated on the macroporous wall surface of 3DOM-SrTiO_(3) altered the primary product from CO to CH4.The Z-scheme electron transfer from SnS_(2) combining with the holes in SrTiO_(3) occurred under full spectrum photoexcitation,which improved the excitation and utilization of photogene rated electrons for C02 multi-electrons reduction.As a result,(SnS_(2))3/3 DOM-SrTiO_(3) catalyst exhibits higher activity for photocatalytic CO_(2) reduction to CH4 compared with single SnS_(2) or 3 DOM-SrTiO_(3),i.e.,its yield and selectivity of CH4 are 12.5μmol g^(-1) h^(-1) and 74.9%,re spectively.The present work proposed the theoretical foundation of Z-scheme heterojunction construction for enhancing photocatalytic activity and selectivity for CO_(2) conversion. 展开更多
关键词 3DOM-SrTiO3 SnS_(2) Z-scheme heterojunction CO_(2)conversion ch4 selectivity
原文传递
Pt、Cu共改性TiO2选择性光催化还原CO2制CH4 被引量:5
2
作者 李长华 赵江婷 +1 位作者 熊卓 赵永椿 《洁净煤技术》 CAS 2020年第4期162-167,共6页
光催化还原CO2是具有前景的可再生能源技术,但由于光生电子-空穴对的快速复合和对可见光的有限利用,TiO2表现出较低的光催化反应效率,为了提高TiO2光催化还原CO2的效率,用金属改性TiO2是一种有效的方式。笔者通过化学还原法将Pt和Cu2O... 光催化还原CO2是具有前景的可再生能源技术,但由于光生电子-空穴对的快速复合和对可见光的有限利用,TiO2表现出较低的光催化反应效率,为了提高TiO2光催化还原CO2的效率,用金属改性TiO2是一种有效的方式。笔者通过化学还原法将Pt和Cu2O纳米颗粒沉积在锐钛矿TiO2晶体表面,系统研究了Pt、Cu共改性对TiO2光催化还原CO2性能的影响。光催化试验结果表明,Pt沉积有利于生成CH4和H2,而Cu2O会抑制H 2的生成,且对CH4的选择性低于Pt。Pt和Cu2O同时沉积在TiO2晶体上时,H2的生成受到抑制,CO2被选择性地还原为CH4,选择性达96.6%。催化剂表征结果表明,Pt能捕获光生电子,从而提高催化剂上的电子密度,有利于多电子还原反应发生,高选择性地生成CH4。Cu2O提高了催化剂对CO2的化学吸附能力,同时对水的吸附能力较弱,从而抑制H 2的生成,提高了光生电子对CO2还原的选择性。此外,反应后的Pt-Cu/TiO2中Cu2O几乎被完全还原为Cu,这可能是由于在光催化反应过程中,Pt沉积可促进光生电子向Cu2O迁移,在Cu2O还原为Cu的同时为光催化还原反应提供更多的电子,有利于CH4的选择性生成。因此,Pt-Cu/TiO2催化剂可将CO2选择性地还原为CH4。经3次循环试验,催化剂的活性未降低,具有良好的稳定性。 展开更多
关键词 co2光催化还原 TIO2 选择性 共沉积 ch4
在线阅读 下载PDF
压力驱动条件下页岩微纳米孔隙CO_(2)/CH_(4)竞争吸附特性 被引量:8
3
作者 邓佳 张奇 +3 位作者 王栋 刘今子 高丽 董丽娜 《东北石油大学学报》 CAS 北大核心 2021年第5期109-116,I0008,共9页
流动状态下的CO_(2)/CH_(4)竞争吸附特性对高效开采页岩气具有重要作用。引入吸附选择性系数和置换效率,建立石墨烯微纳米孔隙模型,采用非平衡分子动力学方法,在压力驱动条件下,模拟微纳米孔隙中注入压力、温度及压差对CO_(2)/CH_(4)二... 流动状态下的CO_(2)/CH_(4)竞争吸附特性对高效开采页岩气具有重要作用。引入吸附选择性系数和置换效率,建立石墨烯微纳米孔隙模型,采用非平衡分子动力学方法,在压力驱动条件下,模拟微纳米孔隙中注入压力、温度及压差对CO_(2)/CH_(4)二元混合物竞争吸附行为的影响。结果表明:CO_(2)吸附能力强于CH_(4),流动状态下吸附选择性系数和置换效率与注入压力呈正比,与温度呈反比;流动状态下的CO_(2)/CH_(4)的吸附选择性较无流动时的低。该结果为研究页岩储层中CO_(2)/CH_(4)竞争吸附机理提供依据。 展开更多
关键词 页岩 微纳米孔隙 压力驱动 CO_(2)/ch_(4)竞争吸附 吸附选择性系数 置换效率 非平衡分子动力学
在线阅读 下载PDF
Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine 被引量:3
4
作者 Guolang Zhou Xiaowei Li +7 位作者 Linlin Chen Guiling Luo Jun Gu Jie Zhu Jiangtao Yu Jingzhou Yin Yanhong Chao Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期316-322,共7页
In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best c... In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best choices for commercial applications because of its high selectivity and low energy consumption.However, the low ion diffusion coefficient of lithium manganate limits the further development of electrochemical lithium recovery system. In this work, a novel porous disc-like LiMn_(2)O_(4) was successfully synthesized for the first time via two-step annealing manganese(Ⅱ) precursors. The as-prepared LiMn_(2)O_(4) exhibits porous disc-like morphology, excellent crystallinity, high Li^(+)diffusion coefficient(average 7.6×10^(-9)cm^(2)·s^(-1)), high cycle stability(after 30 uninterrupted extraction and release cycles, the crystal structure hardly changed) and superior rate capacity(93.5% retention from 10-120 mA·g^(-1)). The porous structure and disc-like morphology further promote the contact between lithium ions and electrode materials. Therefore, the assembled electrochemical lithium extraction device with LiMn_(2)O_(4) as positive electrode and silver as negative electrode can realize the rapid and selective extraction of lithium in simulated brine(adsorption capacity of lithium can reach 4.85 mg·g^(-1) in 1 h). The mechanism of disc-like LiMn_(2)O_(4) in electrochemical lithium extraction was proposed based on the analysis of electrochemical characterization and quasi in situ XRD. This novel structure may further promote the practical application of electrochemical lithium extraction from brine. 展开更多
关键词 LiMn_(2)O_(4) DESALINATION Diffusion coefficient ELECTROchEMISTRY BRINE selectivity
在线阅读 下载PDF
Atomically Precise Pd Species Accelerating CO_(2) Hydrodeoxygenation into CH_(4) with 100%Selectivity
5
作者 Kai Zheng Siying Liu +14 位作者 Bangwang Li Juncheng Zhu Xiaojing Zhang Mingyu Wu Li Li Shan Zhu Wenxiu Liu Jun Hu Chengyuan Liu Minghui Fan Ming Zuo Junfa Zhu Yang Pan Yongfu Sun Yi Xie 《Precision Chemistry》 2023年第9期530-537,共8页
High-rate CO_(2)-to-CH_(4)photoreduction with high selectivity is highly attractive,which is a win-win strategy for mitigating the greenhouse effect and the energy crisis.However,the poor photocatalytic activity and l... High-rate CO_(2)-to-CH_(4)photoreduction with high selectivity is highly attractive,which is a win-win strategy for mitigating the greenhouse effect and the energy crisis.However,the poor photocatalytic activity and low product selectivity hinder the practical application.To precisely tailor the product selectivity and realize high-rate CO_(2)photoreduction,we design atomically precise Pd species supported on In_(2)O_(3)nanosheets.Taking the synthetic 1.30Pd/In_(2)O_(3)nanosheets as an example,the aberration-correction high-angle annular dark-field scanning transmission electron microscopy image displayed the Pd species atomically dispersed on the In_(2)O_(3)nanosheets.Raman spectra and X-ray photoelectron spectra established that the strong interaction between the Pd species and the In_(2)O_(3)substrate drove electron transfer from In to Pd species,resulting in electron-enriched Pd sites for CO_(2)activation.Synchrotronradiation photoemission spectroscopy demonstrated that the Pd species can tailor the conduction band edge of In_(2)O_(3)nanosheets to match the CO_(2)-to-CH_(4)pathway,instead of the CO_(2)-to-CO pathway,which theoretically accounts for the high CH_(4)selectivity.Moreover,in situ X-ray photoelectron spectroscopy unveiled that the catalytically active sites had a change from In species to Pd species over the 1.30Pd/In_(2)O_(3)nanosheets.In situ FTIR and EPR spectra reveal the atomically precise Pd species with rich electrons prefer to adsorb the electrophilic protons for accelerating the*COOH intermediates hydrogenation into CH_(4).Consequently,the 1.30Pd/In_(2)O_(3)nanosheets reached CO_(2)-to-CH_(4)photoconversion with 100%selectivity and 81.2μmol g^(−1)h^(−1)productivity. 展开更多
关键词 CO_(2)-to-ch_(4)pathway atomically precise Pd species conduction band edge ch4 selectivity photoelectrons transfer
在线阅读 下载PDF
Analysis of highly efficient perovskite solar cells with inorganic hole transport material
6
作者 I Kabir S A Mahmood 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期393-399,共7页
Organo-halide perovskites in planar heterojunction architecture have shown considerable promise as efficient light harvesters in solar cells. We carry out a numerical modeling of a planar lead based perovskite solar c... Organo-halide perovskites in planar heterojunction architecture have shown considerable promise as efficient light harvesters in solar cells. We carry out a numerical modeling of a planar lead based perovskite solar cell(PSC) with Cu2ZnSnS4(CZTS) as the hole transporting material(HTM) using the one-dimensional solar cell capacitance simulator(SCAPS-1 D). The effects of numerous parameters such as defect density, thickness, and doping density of the absorber layer on the device performance are investigated. The doping densities and electron affinities of the electron transporting material(ETM) and the HTM are also varied to optimize the PSC performance. It has been observed that a thinner absorber layer of220 nm with a defect density of 1014 cm-3 compared to the reference structure improves the device performance. When doping density of the absorber layer increases beyond 2×1016 cm-3, the power conversion efficiency(PCE) reduces due to enhanced recombination rate. The defect density at the absorber/ETM interface reduces the PCE as well. Considering a series resistance of 5 ?·cm2 and all the optimum parameters of absorber, ETM and HTM layers simultaneously, the overall PCE of the device increases significantly. In comparison with the reference structure, the PCE of the optimized device has been increased from 12.76% to 22.7%, and hence the optimized CZTS based PSC is highly efficient. 展开更多
关键词 ch3NH3PbI3 Cu2ZnSnS4(CZTS) SCAPS-1D absorption coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部