Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses su...Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity.展开更多
In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the fi...In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigate...Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.展开更多
A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those ...A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst. After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst. The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasma- assisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst.展开更多
A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.
基金Supported by the National Natural Science Foundation of China(U1361202,51276120)
文摘Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity.
基金The author would like to appreciate the funding supports of the State of Wyoming and China Scholarship Council.Without their supports,the international collaboration on clean energy technology development would have been impossible.
文摘In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.
文摘A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst. After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst. The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasma- assisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst.
基金the Zhejiang Provincial Science Foundation of China and by the Education Commission of Zhejiang Province.
文摘A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.