Climate change impacts soil nitrogen, influencing plant responses to elevated atmospheric [CO2]. Understanding the interaction between nitrogen supply and elevated [CO2] is crucial for predicting plant future performa...Climate change impacts soil nitrogen, influencing plant responses to elevated atmospheric [CO2]. Understanding the interaction between nitrogen supply and elevated [CO2] is crucial for predicting plant future performance. This study examined the interactive effects of elevated [CO2] and nitrogen supply on the eco-physiological performance of yellow birch. Seedlings were exposed to two [CO2] levels and five nitrogen supply levels for 4 months. Growth parameters such as seedling height and root collar diameter increased with higher nitrogen supply and elevated [CO2], while specific leaf area decreased. [CO2] elevation and increasing nitrogen supply also increased the total and stem, and leaf biomass. The elevated [CO2] increased the stem mass ratio but decreased the root-to-shoot ratio and root mass ratio. However, decreases in nitrogen supply increased root mass ratio and root-to-shoot ratio. The elevated [CO2] increased the maximum rate of Rubisco carboxylation (Vcmax) and photosynthetic electron transport (Jmax), but the effect on Jmax was statistically significant only at the two highest nitrogen supply levels. The results indicate that yellow birch may increase photosynthetic capacity, biomass, and growth in the future when [CO2] is higher.展开更多
CO2 hydrogenation to formate is an effective strategy for promoting the sustainable carbon cycle.However,formate yields are significantly influenced by the amount of noble metal(e.g.,Pd)used.Here,we present Pd-Ni syne...CO2 hydrogenation to formate is an effective strategy for promoting the sustainable carbon cycle.However,formate yields are significantly influenced by the amount of noble metal(e.g.,Pd)used.Here,we present Pd-Ni synergistic catalysis on the hollow NiCo2O4 spinel arrays(PdxNiy/NCO@CC)for enhanced formate production under mild conditions.The Pd-Ni dual-site structure effectively enhances electron accumulation on Pd via charge polarization and the synergistic interaction between Pd and Ni,leading to significantly improved formate yields with a reduced usage of noble metal catalyst.The optimized Pd5Ni5/NCO@CC catalyst achieved a remarkable formate yield of 282.5 molformate molPd^(-1)h^(-1)at 333 K and demonstrated high stability.This strategy of synergistically enhancing catalytic activity via bimetallic sites highlights its advantages in other catalytic fields and practical applications.展开更多
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper...Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .展开更多
The merits of CO2 capture and storage to the environmental stability of our world should not be underestimated as emissions of greenhouse gases cause serious problems.It represents the only technology that might rid o...The merits of CO2 capture and storage to the environmental stability of our world should not be underestimated as emissions of greenhouse gases cause serious problems.It represents the only technology that might rid our atmosphere of the main anthropogenic gas while allowing for the continuous use of the fossil fuels which still power today’s world.Underground storage of CO2 involves the injection of CO2 into suitable geological formations and the monitoring of the injected plume over time,to ensure containment.Over the last two or three decades,attention has been paid to technology developments of carbon capture and sequestration.Therefore,it is high time to look at the research done so far.In this regard,a high-level review article is required to provide an overview of the status of carbon capture and sequestration research.This article presents a review of CO2 storage technologies which includes a background of essential concepts in storage,the physical processes involved,modeling procedures and simulators used,capacity estimation,measuring monitoring and verification techniques,risks and challenges involved and field-/pilot-scale projects.It is expected that the present review paper will help the researchers to gain a quick knowledge of CO2 sequestration for future research in this field.展开更多
The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible ligh...The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.展开更多
The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
文摘Climate change impacts soil nitrogen, influencing plant responses to elevated atmospheric [CO2]. Understanding the interaction between nitrogen supply and elevated [CO2] is crucial for predicting plant future performance. This study examined the interactive effects of elevated [CO2] and nitrogen supply on the eco-physiological performance of yellow birch. Seedlings were exposed to two [CO2] levels and five nitrogen supply levels for 4 months. Growth parameters such as seedling height and root collar diameter increased with higher nitrogen supply and elevated [CO2], while specific leaf area decreased. [CO2] elevation and increasing nitrogen supply also increased the total and stem, and leaf biomass. The elevated [CO2] increased the stem mass ratio but decreased the root-to-shoot ratio and root mass ratio. However, decreases in nitrogen supply increased root mass ratio and root-to-shoot ratio. The elevated [CO2] increased the maximum rate of Rubisco carboxylation (Vcmax) and photosynthetic electron transport (Jmax), but the effect on Jmax was statistically significant only at the two highest nitrogen supply levels. The results indicate that yellow birch may increase photosynthetic capacity, biomass, and growth in the future when [CO2] is higher.
基金support by the Natural Science Foundation of Jiangsu Province(BK20210867,BK20231342)the China Postdoctoral Science Foundation(2024M752349)+1 种基金National Natural Science Foundation of China(U1604121)the Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province.
文摘CO2 hydrogenation to formate is an effective strategy for promoting the sustainable carbon cycle.However,formate yields are significantly influenced by the amount of noble metal(e.g.,Pd)used.Here,we present Pd-Ni synergistic catalysis on the hollow NiCo2O4 spinel arrays(PdxNiy/NCO@CC)for enhanced formate production under mild conditions.The Pd-Ni dual-site structure effectively enhances electron accumulation on Pd via charge polarization and the synergistic interaction between Pd and Ni,leading to significantly improved formate yields with a reduced usage of noble metal catalyst.The optimized Pd5Ni5/NCO@CC catalyst achieved a remarkable formate yield of 282.5 molformate molPd^(-1)h^(-1)at 333 K and demonstrated high stability.This strategy of synergistically enhancing catalytic activity via bimetallic sites highlights its advantages in other catalytic fields and practical applications.
文摘Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .
基金support provided by the Department of Petroleum Engineering,Khalifa University of Science and Technology,Sas Al Nakhl Campus,Abu Dhabi,UAE
文摘The merits of CO2 capture and storage to the environmental stability of our world should not be underestimated as emissions of greenhouse gases cause serious problems.It represents the only technology that might rid our atmosphere of the main anthropogenic gas while allowing for the continuous use of the fossil fuels which still power today’s world.Underground storage of CO2 involves the injection of CO2 into suitable geological formations and the monitoring of the injected plume over time,to ensure containment.Over the last two or three decades,attention has been paid to technology developments of carbon capture and sequestration.Therefore,it is high time to look at the research done so far.In this regard,a high-level review article is required to provide an overview of the status of carbon capture and sequestration research.This article presents a review of CO2 storage technologies which includes a background of essential concepts in storage,the physical processes involved,modeling procedures and simulators used,capacity estimation,measuring monitoring and verification techniques,risks and challenges involved and field-/pilot-scale projects.It is expected that the present review paper will help the researchers to gain a quick knowledge of CO2 sequestration for future research in this field.
文摘The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.