In this work,the surface properties of CeO_(2)-supported Cu catalysts were adjusted via doping Mn or/and Co with different ratios(CuMnaCO_(1-a)/Ce,a=0,0.25,0.5,0.75 and 1).The roles of metallic effects on the activiti...In this work,the surface properties of CeO_(2)-supported Cu catalysts were adjusted via doping Mn or/and Co with different ratios(CuMnaCO_(1-a)/Ce,a=0,0.25,0.5,0.75 and 1).The roles of metallic effects on the activities,structures and reaction pathways of the catalysts were investigated using various characterization techniques.The results reveal the CuMnCo/Ce catalysts show better performance,followed by Cu/Ce and MnCo/Ce.Among CuMnCo/Ce catalysts,the CuMn_(0.25)Co_(0.75)/Ce exhibits the excellent activity under a higher gas hourly space velocity.The improved surface properties mainly involve the higher dispersion of CuOxand stronger redox cycle due to Co substitution,and more active oxygen species(oxygen vacancies and activated lattice oxygen)contributed by Mn substitution.From the in situ infrared spectroscopy(in situ IR)experiments,the electron transfer of Cu and Co can strengthen the adsorption of CO on Cu species indirectly,whereas,more oxygen defects coming from the Mn-OV-Ce structure boost the activation of oxygen species,the formation of carbonate intermediates and then the release of CO_(2).This work may guide the simple regulation of active sites and the utilization of the catalytic potential of Cu-Ce oxide catalysts.展开更多
Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity a...Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity and stability in CO oxida-tion.This study presents an innovative,environmentally friendly electrosynthesis method for producing stable,structured Cu–Ce catalysts in mesh form.This approach addresses the limitations of traditional pellet catalysts,such as fragility and poor thermal conductivity.The results demonstrated that incorporating cerium(Ce)enhanced the catalytic activity for CO oxidation threefold.A series of in situ characterizations revealed that the introduction of Ce led to the formation of a Cu–Ce mixed oxide solid solution,which significantly improved catalytic performance.Furthermore,higher pretreatment tem-peratures facilitated the decomposition of Ce compounds(nitrate and hydroxide),which promotes the formation of Cu–Ce solid solutions and increases the concentration of active intermediate species(Cu^(+)-CO)during the reaction.This process ultimately enhanced the catalyst’s activity.展开更多
Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA site...Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA sites under reaction conditions.This study focuses on CO oxidation over Gd-doped ceriasupported Cu catalysts and aims to provide a new strategy to stabilize the SA site,in which a Cu SA site is "prestored" in a relatively stable Cu cluster and can be dynamically activated under reaction conditions.Three typical Cu_(10)/CeO_(2)catalyst models were built with different Gd-doping contents,which are pristine Cu_(10)/CeO_(2),Cu_(10)/Gd_(0.125)Ce_(0.875)O_(2),and Cu_(10)/Gd_(0.25)Ce_(0.75)O_(2),respectively.We performed density functional theory(DFT) calculations on the Cu_(10)/Gd-CeO_(2)system to investigate the adsorption of CO and O_(2)molecules,the formation of surface oxygen vacancy(OV) and dynamic Cu SA site,and potential energy surfaces of CO oxidation process.Ab initio thermodynamic analysis suggests that the saturation adsorption of CO on Cu_(10)and high Gd-doping in CeO_(2)lead to a spontaneously formed single Cu-CO site and an OVdefect on ceria surface.The CO oxidation process is identified as a two-paths-coupled catalytic cycle,in which Path Ⅰ is activated by the terminal O atom of adsorbed O_(2)at surface OVsite while Path Ⅱinitiates with the lattice O atom of CeO_(2)surface.The micro kinetic modeling demonstrates that the dominant pathway is Path Ⅰ for the undoped and low-doping cases,and Path Ⅱ for the high-doping case which exhibits a novel mechanism for CO oxidation and the highest reaction activity due to the participation of the dynamic SA site.展开更多
A series of heteronuclear yttrium-nickel monoxide carbonyl complexes YNiO(CO)_(n)^(-)(n=1-5)were generated in a pulsed-laser vaporization source and characterized by mass-selected photoelectron velocity-map spectrosco...A series of heteronuclear yttrium-nickel monoxide carbonyl complexes YNiO(CO)_(n)^(-)(n=1-5)were generated in a pulsed-laser vaporization source and characterized by mass-selected photoelectron velocity-map spectroscopy combined with theoretical calculations.CO ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes was experimentally and theoretically identified.During the consecutive CO adsorption,aμ^(2)-O linear structure was most favorable for YNiO(CO)_(n)^(-)(n=1,2),then a structure in which the terminal O was bonded to the Y atom became favored for YNiO(CO)_(3)^(-),and finally a structure bearing a CO_(2)moiety was most favorable for YNiO(CO)_(n)^(-)(n=4,5).Theoretical calculations indicated that the Ni atom acted as an electron acceptor and accumulated electron density at n≤3,and then served as an electron donor along with the Y atom to contribute electron density in the rearrangement that accompanied CO oxidation at n>3.展开更多
The development of efficient low-load platinum catalysts for CO oxidation is critical for large-scale industrial applications and environmental protection.In this study,a strategy of N_(2)treatment triggered the self-...The development of efficient low-load platinum catalysts for CO oxidation is critical for large-scale industrial applications and environmental protection.In this study,a strategy of N_(2)treatment triggered the self-reforming into fully exposed Pt cluster catalysts was proposed.By adjusting the coordination environment of Pt species on the defect support through N_(2)treatment,the CO catalytic activity was significantly enhanced,achieving complete CO oxidation at 130℃with a Pt loading of only 0.1 wt.%.The turnover frequency of N_(2)-treated Pt_(FEC)/Ti-D at 160℃was 18.3 times that of untreated Pt_(SA)/Ti-D.Comprehensive characterization results indicated that the N_(2)treatment of the Pt single-atom defect catalyst facilitated the reconfiguration and evolution of the defect structure,leading to the aggregation of Pt single atoms into fully exposed Pt clusters.Notably,these fully exposed Pt clusters exhibited a reduced coordination of Pt–O in the first coordination shell compared to single atoms,which resulted in the formation of Pt–Pt metal coordination.This unique coordination structure enhanced the adsorption and activation of CO and O_(2)on the catalyst,thereby resulting in exceptionally low-temperature CO oxidation activity.This work demonstrates a promising strategy for the design,synthesis,and industrial application of efficient low-platinum load catalysts.展开更多
A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher sp...A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher specific surface area,Co^(3+)/Co^(2+)ratio,and oxygen vacancy content compared to Co_(3)O_(4).As a result,it displayed better performance in CO oxidation,achieving a total conversion temperature(T100)of 96℃.Au greatly improved the catalytic efficiency of all Co_(x)Fe_(3-x)O_(4) samples,with the 0.2%Au/Co_(2)FeO_(4) catalyst achieving a further decrease in T100 to 73℃.Stability tests conducted at room temperature on the 1%Au/Co_(x)Fe_(3-x)O_(4) catalysts demonstrated a slowed deactivation rate after Fe-doping.The reaction pathway for CO oxidation catalyzed by Au/Co_(2)FeO_(4) followed the Mars-van Krevelen mechanism.展开更多
The catalyst cost is a key factor limiting the CO purification of sintering flue gas.Here,an ultra-low-loading high-entropy catalyst was prepared by simple calcination process.By anchoring multiple active metal sites ...The catalyst cost is a key factor limiting the CO purification of sintering flue gas.Here,an ultra-low-loading high-entropy catalyst was prepared by simple calcination process.By anchoring multiple active metal sites in the stable anatase TiO_(2)phase,it shows efficient CO catalytic oxidation activity.The metal components(Pt,Mn,Fe,Co,Ni)were uniformly dispersed on the surface of TiO_(2)in the form of high-entropy compounds and undergo strong metal and support interaction with TiO_(2).The results showed that 0.1(PtMnFeCoNi)/TiO_(2)achieved complete oxidation of CO at 230℃,and its catalytic oxidation ability was significantly better than that of the corresponding monometallic and bimetallic catalysts.The high-entropy component adjusts the electronic environment between the TiO_(2)support and the metal to promote the reduction of the Ti_(3d)band gap,enhances the electron-induced ability of the catalytic system to gas molecules(CO and O_(2)),and exhibits excellent resistance to SO_(2)and H_(2)O.The work is of great significance to understand the synergistic regulation of catalyst activity by multiple metal at the atomic level and provides a strategy for effectively reducing the content of precious metals in the catalyst.展开更多
The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed...The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.展开更多
Intercalation of rare-earth(RE)into Pt offers an option to optimize the electronic structure of Pt-based catalysts by interaction effect,in which the synergistic catalytic sites are of great significance,yet the under...Intercalation of rare-earth(RE)into Pt offers an option to optimize the electronic structure of Pt-based catalysts by interaction effect,in which the synergistic catalytic sites are of great significance,yet the underpinning mechanism remains elusive.Herein,the introduction of silanol nests enables the alloy formation on the SiO_(2)surface.The amination modification is disclosed to induce the electron transfer from RE to Pt and weaken the adsorption of CO on electron-rich Pt species.In situ/operando spectroscopic analyses in conjunction with density functional theory calculations demonstrate the electronic couple of Pt atoms and adjacent Ce atoms concurrently achieves the enhancement of CO oxidation and suppression of H_(2)oxidation.Additionally,CO_(2)is readily desorbed from the Pt_(5)Ce(111)surface to enhance intrinsic activity and longevity.These findings provide an atomic-level insight into the synergistic catalytic sites on regulating the electronic state of the Pt-RE alloy catalysts toward highly selective oxidation reactions.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were...The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.展开更多
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),...Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicoch...A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicochemical properties of different CuO/CeO2 catalysts were characterized by thermogravimetrie and differential scanning calorimetric measurements (TG-DSC), X-ray diffraction (XRD), N2 adsorpti0n-desorption, Raman spectroscopy, H2 temperature-programmed reduction (H2-TPR), tern- perature-programmed desorption of 02 (O2-TPD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The re- sults suggested that the addition of hexadecyl trimethyl ammonium bromide (CTAB) into the impregnation solution could improve the dispersion of CuO species, which could facilitate Cu2+ incorporating into CeO2 lattice and strengthened the synergistic effects between CuO and CeO2, making the lattice oxygen more active, and eventually resulting in enhanced activity for CO oxidation.展开更多
A urea-nitrate combustion method was used to prepare Ce-Mn-O material, which was applied as the support for a series of CuO/Ce-Mn-O catalysts. The structure of the catalysts was characterized with Nz adsorption/desorp...A urea-nitrate combustion method was used to prepare Ce-Mn-O material, which was applied as the support for a series of CuO/Ce-Mn-O catalysts. The structure of the catalysts was characterized with Nz adsorption/desorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the catalysts for the oxidation of CO was evaluated on a conventional fixed-bed quartz reactor. XRD results showed that the synergetic effect between manganese and cerium led to a little higher electron density of Ce3+ in the mixed oxides. When the CuO content was lower than 5 wt.%, Cu species were well dispersed onto the Ce-Mn-O support or/and they formed a solid solution with CeO2 (inside the fluorite lattice). At higher CuO content (CuO〉5 wt.%), large CuO particles were observed. There was strong interaction among ceria, man- ganese and copper oxide because of the doping of Mn. This interplay changed the reducibility and the valence states of the compo- nents, leading to the improved activity of the CuO/Ce-Mn-O catalysts.展开更多
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2...Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.展开更多
Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray pho...Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.展开更多
Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ...Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.展开更多
CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via ...CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via the method of incipient-wetness im- pregnation. The obtained CuO/Ce0.6Zr0.402 samples were characterized by N2 adsorption, XRD, Raman, TEM and H2-TPR technolo- gies, and their catalytic activities for CO oxidation were investigated. The results showed that the activity of CuO/Ce0.6Zr0.402 catalyst was strongly influenced by the content of CuO, and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxida- tion, which could be attributed to the high dispersion and reducibility of CuO, and high oxygen vacancy concentration in the catalyst.展开更多
基金Project supported by the National Natural Science Foundation of China(52206180)。
文摘In this work,the surface properties of CeO_(2)-supported Cu catalysts were adjusted via doping Mn or/and Co with different ratios(CuMnaCO_(1-a)/Ce,a=0,0.25,0.5,0.75 and 1).The roles of metallic effects on the activities,structures and reaction pathways of the catalysts were investigated using various characterization techniques.The results reveal the CuMnCo/Ce catalysts show better performance,followed by Cu/Ce and MnCo/Ce.Among CuMnCo/Ce catalysts,the CuMn_(0.25)Co_(0.75)/Ce exhibits the excellent activity under a higher gas hourly space velocity.The improved surface properties mainly involve the higher dispersion of CuOxand stronger redox cycle due to Co substitution,and more active oxygen species(oxygen vacancies and activated lattice oxygen)contributed by Mn substitution.From the in situ infrared spectroscopy(in situ IR)experiments,the electron transfer of Cu and Co can strengthen the adsorption of CO on Cu species indirectly,whereas,more oxygen defects coming from the Mn-OV-Ce structure boost the activation of oxygen species,the formation of carbonate intermediates and then the release of CO_(2).This work may guide the simple regulation of active sites and the utilization of the catalytic potential of Cu-Ce oxide catalysts.
基金supported by the National Key R&D Program of China(No.2022YFB3805504)the National Natu-ral Science Foundation of China(No.22078089)+2 种基金the Shanghai Pilot Program for Basic Research(No.22TQ1400100-7)the Basic Research Program of Science and Technology Commission of Shanghai Munici-pality(No.22JC1400600)the Fundamental Research Funds for the Central Universities.
文摘Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity and stability in CO oxida-tion.This study presents an innovative,environmentally friendly electrosynthesis method for producing stable,structured Cu–Ce catalysts in mesh form.This approach addresses the limitations of traditional pellet catalysts,such as fragility and poor thermal conductivity.The results demonstrated that incorporating cerium(Ce)enhanced the catalytic activity for CO oxidation threefold.A series of in situ characterizations revealed that the introduction of Ce led to the formation of a Cu–Ce mixed oxide solid solution,which significantly improved catalytic performance.Furthermore,higher pretreatment tem-peratures facilitated the decomposition of Ce compounds(nitrate and hydroxide),which promotes the formation of Cu–Ce solid solutions and increases the concentration of active intermediate species(Cu^(+)-CO)during the reaction.This process ultimately enhanced the catalyst’s activity.
基金Project supported by State Key Laboratory of Molecular&Process Engineering (RIPP, SINOPEC)(36800000-23-ZC0699-0042)the National Natural Science Foundation of China (22072182, 21776315, 12104513)+2 种基金the National Key Research and Development Program of China (2019YFA0708703)the Taishan Scholars Program of Shandong Province (tsqn201909071)the Shandong Provincial Natural Science Foundation of China (ZR2020QA050, ZR2023MB034)。
文摘Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA sites under reaction conditions.This study focuses on CO oxidation over Gd-doped ceriasupported Cu catalysts and aims to provide a new strategy to stabilize the SA site,in which a Cu SA site is "prestored" in a relatively stable Cu cluster and can be dynamically activated under reaction conditions.Three typical Cu_(10)/CeO_(2)catalyst models were built with different Gd-doping contents,which are pristine Cu_(10)/CeO_(2),Cu_(10)/Gd_(0.125)Ce_(0.875)O_(2),and Cu_(10)/Gd_(0.25)Ce_(0.75)O_(2),respectively.We performed density functional theory(DFT) calculations on the Cu_(10)/Gd-CeO_(2)system to investigate the adsorption of CO and O_(2)molecules,the formation of surface oxygen vacancy(OV) and dynamic Cu SA site,and potential energy surfaces of CO oxidation process.Ab initio thermodynamic analysis suggests that the saturation adsorption of CO on Cu_(10)and high Gd-doping in CeO_(2)lead to a spontaneously formed single Cu-CO site and an OVdefect on ceria surface.The CO oxidation process is identified as a two-paths-coupled catalytic cycle,in which Path Ⅰ is activated by the terminal O atom of adsorbed O_(2)at surface OVsite while Path Ⅱinitiates with the lattice O atom of CeO_(2)surface.The micro kinetic modeling demonstrates that the dominant pathway is Path Ⅰ for the undoped and low-doping cases,and Path Ⅱ for the high-doping case which exhibits a novel mechanism for CO oxidation and the highest reaction activity due to the participation of the dynamic SA site.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2021QB215)the National Natural Science Foundation of China(Nos.22273101,22125303,92061203,21327901,and 22288201)+2 种基金Dalian Institute of Chemical Physics(No.DICP I202437)the Talent Induction Program for Youth Innovation Teams in Colleges and Universities of Shandong Province(No.2022-2024)the Talent Introduction Research Start-up Funds of Ludong University(No.20212026)。
文摘A series of heteronuclear yttrium-nickel monoxide carbonyl complexes YNiO(CO)_(n)^(-)(n=1-5)were generated in a pulsed-laser vaporization source and characterized by mass-selected photoelectron velocity-map spectroscopy combined with theoretical calculations.CO ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes was experimentally and theoretically identified.During the consecutive CO adsorption,aμ^(2)-O linear structure was most favorable for YNiO(CO)_(n)^(-)(n=1,2),then a structure in which the terminal O was bonded to the Y atom became favored for YNiO(CO)_(3)^(-),and finally a structure bearing a CO_(2)moiety was most favorable for YNiO(CO)_(n)^(-)(n=4,5).Theoretical calculations indicated that the Ni atom acted as an electron acceptor and accumulated electron density at n≤3,and then served as an electron donor along with the Y atom to contribute electron density in the rearrangement that accompanied CO oxidation at n>3.
基金supported by the National Natural Science Foundation of China(52170118,52322004,52230002)the China Postdoctoral Science Foundation(2024M763296).
文摘The development of efficient low-load platinum catalysts for CO oxidation is critical for large-scale industrial applications and environmental protection.In this study,a strategy of N_(2)treatment triggered the self-reforming into fully exposed Pt cluster catalysts was proposed.By adjusting the coordination environment of Pt species on the defect support through N_(2)treatment,the CO catalytic activity was significantly enhanced,achieving complete CO oxidation at 130℃with a Pt loading of only 0.1 wt.%.The turnover frequency of N_(2)-treated Pt_(FEC)/Ti-D at 160℃was 18.3 times that of untreated Pt_(SA)/Ti-D.Comprehensive characterization results indicated that the N_(2)treatment of the Pt single-atom defect catalyst facilitated the reconfiguration and evolution of the defect structure,leading to the aggregation of Pt single atoms into fully exposed Pt clusters.Notably,these fully exposed Pt clusters exhibited a reduced coordination of Pt–O in the first coordination shell compared to single atoms,which resulted in the formation of Pt–Pt metal coordination.This unique coordination structure enhanced the adsorption and activation of CO and O_(2)on the catalyst,thereby resulting in exceptionally low-temperature CO oxidation activity.This work demonstrates a promising strategy for the design,synthesis,and industrial application of efficient low-platinum load catalysts.
基金supported by the Fundamental Research Program of Shanxi Province of China(202203021211103,202303021212172,202403021211196).
文摘A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher specific surface area,Co^(3+)/Co^(2+)ratio,and oxygen vacancy content compared to Co_(3)O_(4).As a result,it displayed better performance in CO oxidation,achieving a total conversion temperature(T100)of 96℃.Au greatly improved the catalytic efficiency of all Co_(x)Fe_(3-x)O_(4) samples,with the 0.2%Au/Co_(2)FeO_(4) catalyst achieving a further decrease in T100 to 73℃.Stability tests conducted at room temperature on the 1%Au/Co_(x)Fe_(3-x)O_(4) catalysts demonstrated a slowed deactivation rate after Fe-doping.The reaction pathway for CO oxidation catalyzed by Au/Co_(2)FeO_(4) followed the Mars-van Krevelen mechanism.
文摘The catalyst cost is a key factor limiting the CO purification of sintering flue gas.Here,an ultra-low-loading high-entropy catalyst was prepared by simple calcination process.By anchoring multiple active metal sites in the stable anatase TiO_(2)phase,it shows efficient CO catalytic oxidation activity.The metal components(Pt,Mn,Fe,Co,Ni)were uniformly dispersed on the surface of TiO_(2)in the form of high-entropy compounds and undergo strong metal and support interaction with TiO_(2).The results showed that 0.1(PtMnFeCoNi)/TiO_(2)achieved complete oxidation of CO at 230℃,and its catalytic oxidation ability was significantly better than that of the corresponding monometallic and bimetallic catalysts.The high-entropy component adjusts the electronic environment between the TiO_(2)support and the metal to promote the reduction of the Ti_(3d)band gap,enhances the electron-induced ability of the catalytic system to gas molecules(CO and O_(2)),and exhibits excellent resistance to SO_(2)and H_(2)O.The work is of great significance to understand the synergistic regulation of catalyst activity by multiple metal at the atomic level and provides a strategy for effectively reducing the content of precious metals in the catalyst.
基金supported by the National Key R&D Program of China (No.2017YFC0210303).
文摘The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.
基金financially supported by the National Natural Science Foundation of China(22468034)the Natural Science Foundation of Inner Mongolia(2021MS02008 and 2022MS02011)the Key Research and Development Project of Ordos(YF20240062)。
文摘Intercalation of rare-earth(RE)into Pt offers an option to optimize the electronic structure of Pt-based catalysts by interaction effect,in which the synergistic catalytic sites are of great significance,yet the underpinning mechanism remains elusive.Herein,the introduction of silanol nests enables the alloy formation on the SiO_(2)surface.The amination modification is disclosed to induce the electron transfer from RE to Pt and weaken the adsorption of CO on electron-rich Pt species.In situ/operando spectroscopic analyses in conjunction with density functional theory calculations demonstrate the electronic couple of Pt atoms and adjacent Ce atoms concurrently achieves the enhancement of CO oxidation and suppression of H_(2)oxidation.Additionally,CO_(2)is readily desorbed from the Pt_(5)Ce(111)surface to enhance intrinsic activity and longevity.These findings provide an atomic-level insight into the synergistic catalytic sites on regulating the electronic state of the Pt-RE alloy catalysts toward highly selective oxidation reactions.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
文摘The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.
文摘Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金supported by the National Natural Science Foundation of China(21273150)‘‘Shu Guang’’Project(10GG23)of Shanghai Municipal Education CommissionShanghai Education Development Foundation
文摘A modified CuO/CeO2 catalyst was prepared by surfactant-assisted impregnation method and showed better catalytic activity for low temperature CO oxidation than that from conventional impregnation method. The physicochemical properties of different CuO/CeO2 catalysts were characterized by thermogravimetrie and differential scanning calorimetric measurements (TG-DSC), X-ray diffraction (XRD), N2 adsorpti0n-desorption, Raman spectroscopy, H2 temperature-programmed reduction (H2-TPR), tern- perature-programmed desorption of 02 (O2-TPD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The re- sults suggested that the addition of hexadecyl trimethyl ammonium bromide (CTAB) into the impregnation solution could improve the dispersion of CuO species, which could facilitate Cu2+ incorporating into CeO2 lattice and strengthened the synergistic effects between CuO and CeO2, making the lattice oxygen more active, and eventually resulting in enhanced activity for CO oxidation.
基金supported by the National Natural Science Foundation of China(21303272)
文摘A urea-nitrate combustion method was used to prepare Ce-Mn-O material, which was applied as the support for a series of CuO/Ce-Mn-O catalysts. The structure of the catalysts was characterized with Nz adsorption/desorption, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the catalysts for the oxidation of CO was evaluated on a conventional fixed-bed quartz reactor. XRD results showed that the synergetic effect between manganese and cerium led to a little higher electron density of Ce3+ in the mixed oxides. When the CuO content was lower than 5 wt.%, Cu species were well dispersed onto the Ce-Mn-O support or/and they formed a solid solution with CeO2 (inside the fluorite lattice). At higher CuO content (CuO〉5 wt.%), large CuO particles were observed. There was strong interaction among ceria, man- ganese and copper oxide because of the doping of Mn. This interplay changed the reducibility and the valence states of the compo- nents, leading to the improved activity of the CuO/Ce-Mn-O catalysts.
文摘Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.
基金supported by National Basic Research Program of China(2010CB732300,2013CB933201)National High Technology Research and Development Program of China(2011AA03A406,2012AA062703)+2 种基金the National Natural Science Foundation of China(21103048,21273150)Shu Guang Project of Shanghai Municipal Education CommissionShanghai Education Development Foundation(10SG30)
文摘Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90% at 135 ℃. This was ascribed to presence of more Mn species with higher oxida- tion state on the surface and the better reducibility over the Ce-Mn-I catalyst than other CeO2-MnOx catalysts.
文摘Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.
基金supported by National Natural Science Foundation of China(21273150)‘‘Shu Guang’’ Project of Shanghai Municipal Education CommissionShanghai Education Development Foundation(10GG23)
文摘CeO2-ZrO2 mixed oxide (Ce0.6Zr0.402) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.402 catalysts with various CuO contents (0 wt.%-1 5 wt.%) via the method of incipient-wetness im- pregnation. The obtained CuO/Ce0.6Zr0.402 samples were characterized by N2 adsorption, XRD, Raman, TEM and H2-TPR technolo- gies, and their catalytic activities for CO oxidation were investigated. The results showed that the activity of CuO/Ce0.6Zr0.402 catalyst was strongly influenced by the content of CuO, and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxida- tion, which could be attributed to the high dispersion and reducibility of CuO, and high oxygen vacancy concentration in the catalyst.