期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Verification of Seasonal Prediction by the Upgraded China Multi-Model Ensemble Prediction System (CMMEv2.0) 被引量:2
1
作者 Jie WU Hong-Li REN +15 位作者 Jianghua WAN Jingpeng LIU Jinqing ZUO Changzheng LIU Ying LIU Yu NIE Chongbo ZHAO Li GUO Bo LU Lijuan CHEN Qing BAO Jingzhi SU Lin WANG Jing-Jia LUO Xiaolong JIA Qingchen CHAO 《Journal of Meteorological Research》 SCIE CSCD 2024年第5期880-900,共21页
Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climat... Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climate Centre(NCC)of the China Meteorological Administration(CMA)by including new model members and expanding prediction products.A comprehensive assessment of the performance of the upgraded CMME during its hindcast(1993–2016)and real-time prediction(2021–present)periods is conducted in this study.The results demonstrate that CMMEv2.0 outperforms all the individual models by capturing more realistic equatorial sea surface temperature(SST)variability.It exhibits better prediction skills for precipitation and 2-m temperature anomalies,and the improvements in prediction skill of CMMEv2.0 are significant over East Asia.The superiority of CMMEv2.0 can be attributed to its better projection of El Niño–Southern Oscillation(ENSO;with the temporal correlation coefficient score for Niño3.4 index reaching 0.87 at 6-month lead)and ENSO-related teleconnections.As for the real-time prediction in recent three years,CMMEv2.0 has also yielded relatively stable skills;it successfully predicted the primary rainbelt over northern China in summers of 2021–2023 and the warm conditions in winters of 2022/2023.Beyond that,ensemble sampling experiments indicate that the CMMEv2.0 skills become saturated after the ensemble model number increased to 5–6,indicating that selection of only an optimal subgroup of ensemble models could benefit the prediction performance,especially over the extratropics,yet the underlying reasons await future investigation. 展开更多
关键词 China multi-model ensemble(cmme)prediction system predictability source El Niño-Southern Oscillation(ENSO) real-time forecast VERIFICATION
原文传递
分钟级路况动态驱动下的多目标冷链物流路径协同优化
2
作者 郝同铮 王训洪 《包装工程》 北大核心 2025年第19期184-197,共14页
目的针对城市交通拥堵环境下生鲜电商与预制菜冷链物流配送效率低、多目标协同优化不足的问题,提出一种融合动态路况的多目标路径优化方法,旨在协同提升经济成本、客户满意度及货物新鲜度。方法基于真实路网构建融合道路拥堵指数与路阻... 目的针对城市交通拥堵环境下生鲜电商与预制菜冷链物流配送效率低、多目标协同优化不足的问题,提出一种融合动态路况的多目标路径优化方法,旨在协同提升经济成本、客户满意度及货物新鲜度。方法基于真实路网构建融合道路拥堵指数与路阻函数的优化模型,以总成本(含碳排放)、平均客户满意度和货物平均新鲜度为多目标,改进CMME多目标进化算法。采用SLHD初始化种群,优化交叉与变异算子,引入自适应策略,并结合时间依赖性A*算法实现分钟级动态路径规划。结果在沈阳某企业的实际案例中,改进CMME在基准测试中IGD和HV指标优于原算法及对比方法。案例求解得到41个Pareto解,代表解总成本为1245.20元,满意度为89.44%,新鲜为度94.27%。碳税每增加0.3元/kg,致总成本上升5.8%,延迟发车可提升满意度,货物变质率对新鲜度影响显著。结论所提模型能有效规避拥堵,改进算法在收敛性、分布性和效率上均具优势,可为时效敏感型物流提供兼顾经济、环境与服务质量的决策支持,相关影响因素也为多偏好决策者提供了参考依据。 展开更多
关键词 冷链物流 路径优化 拥堵指数 时间依赖性A*算法 cmme
在线阅读 下载PDF
二氢卟吩e_6-C_(15)单甲酯:一种发展中的第二代光动力治癌新药候选化合物 被引量:10
3
作者 方瑛 许德余 《中国激光医学杂志》 CAS CSCD 1999年第4期235-238,共4页
目的 探讨二氢卟吩e6C15单甲酯(CMME)作为第二代光动力治癌新药候选化合物的可行性。方法 以家蚕粪叶绿素粗提物为基始原料合成得CMME。研究了CMME在荷肉瘤180 小鼠体内的分布、对还原辅酶Ⅱ钠盐(NADPH... 目的 探讨二氢卟吩e6C15单甲酯(CMME)作为第二代光动力治癌新药候选化合物的可行性。方法 以家蚕粪叶绿素粗提物为基始原料合成得CMME。研究了CMME在荷肉瘤180 小鼠体内的分布、对还原辅酶Ⅱ钠盐(NADPH) 在重水中光氧化作用的敏化效应和对小鼠肉瘤180 的光动力学疗效。结果 CMME合成步骤相对简便,光敏化力强,不同时间的肿瘤/ 正常皮肤分布比达到2 ~10,对动物移植瘤光动力疗效高于血卟啉衍生物,其抑制肿瘤生长50% 的剂量(ID50) 为0-768 mg/kg。结论 CMME是发展第二代光动力治癌新药的一种理想的候选化合物。 展开更多
关键词 肉瘤180 光化学疗法 叶绿素 cmme
暂未订购
超燃冲压发动机流场一维平均方法研究 被引量:4
4
作者 张旭 姜军 +2 位作者 林言中 陈兵 徐旭 《推进技术》 EI CAS CSCD 北大核心 2014年第7期865-873,共9页
介绍了多种平均方法,包括常用的流量或面积加权平均方法,以及CMME(流量/动量/能量守恒)方法和CMES(动量/能量/熵守恒)方法。以超燃冲压发动机进气道-燃烧室构型为对象,研究了不同平均方法得到的等效一维结果差异,以及不同平均方法的入... 介绍了多种平均方法,包括常用的流量或面积加权平均方法,以及CMME(流量/动量/能量守恒)方法和CMES(动量/能量/熵守恒)方法。以超燃冲压发动机进气道-燃烧室构型为对象,研究了不同平均方法得到的等效一维结果差异,以及不同平均方法的入口参数对超燃燃烧室一维计算结果的影响。结果表明:在超燃燃烧室多维热态仿真数据分析时,推荐使用通量守恒方法;CMES方法能准确的保留总压信息,CMME方法得到的总压损失会大于实际,在处理总压恢复性能时,CMES方法更优;亚燃模态时,CMME方法和CMES方法均不能反映隔离段激波串的渐变压缩;超燃模态时,CMES方法能较好地保持动量的近似守恒,在亚燃模态则较差;不同平均方法得到燃烧室入口参数的一维计算结果与三维流场等效一维沿程静压分布均存在一定偏差,Case1流量加权平均解误差高达27.8%,通量守恒解误差仅约13%,Case2流量加权平均解误差为14.9%,通量守恒解误差仅约5%,说明CMME方法与CMES方法符合程度更高,推力计算结果更为可信。 展开更多
关键词 超燃冲压发动机 一维平均方法 面积加权平均 流量加权平均 流量/动量/能量守恒方法 动量/能量/熵守恒方法
原文传递
基于随机矩阵的新型频谱盲感知方法 被引量:3
5
作者 刘宁 史浩山 +1 位作者 刘利平 杨博 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第2期262-267,共6页
针对传统频谱感知算法需要预先估计噪声方差且当存在噪声不确定度时,检测性能降低的特点,提出一种基于随机矩阵的改进型频谱盲感知算法(M-CMME)。该算法通过分析协方差矩阵最大特征值极限分布特性,分析并利用采样协方差矩阵特征值与信... 针对传统频谱感知算法需要预先估计噪声方差且当存在噪声不确定度时,检测性能降低的特点,提出一种基于随机矩阵的改进型频谱盲感知算法(M-CMME)。该算法通过分析协方差矩阵最大特征值极限分布特性,分析并利用采样协方差矩阵特征值与信号平均能量的关系,推导设定虚警概率条件下判决门限的闭式表达式。该算法不需要预先知道授权用户信号的先验知识,且能够有效克服噪声不确定度的影响。仿真结果显示,当噪声方差估计存在偏差的情况下,该算法具有较强的鲁棒性,且在较少采样点、低信噪比、较少阵元数情况下能够获得比CMME更优的检测性能。 展开更多
关键词 频谱感知 特征值 噪声不确定度 随机矩阵理论
在线阅读 下载PDF
The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018 被引量:24
6
作者 Hong-Li REN Yujie WU +9 位作者 Qing BAO Jiehua MA Changzheng LIU Jianghua WAN Qiaoping LI Xiaofei WU Ying LIU Ben TIAN Joshua-Xiouhua FU Jianqi SUN 《Journal of Meteorological Research》 SCIE CSCD 2019年第3期540-552,共13页
Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of ... Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991-2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Nino-Southern Oscillation (ENSO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June-July-August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March-August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation. 展开更多
关键词 MULTI-MODEL ENSEMBLE China MULTI-MODEL ENSEMBLE PREDICTION system (cmme) real-time FORECAST SKILL assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部