This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision positi...This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized;that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of the proposed control system so that the stability of the system can be guaranteed. The simulation results of three-link De-icing robot manipulator are provided to verify the effectiveness of the proposed control methodology.展开更多
In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying t...In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.展开更多
In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of im...In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.展开更多
The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise m...The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise mathemati- cal model for control. So, a new method for establishing a hydraulic roll bending control system is put forward by cerebellar model articulation controller (CMAC) neural network and proportional-integral-derivative (PID) coupling control strategy. The non-linear relationship between input and output can be achieved by the concept mapping and the actual mapping of CMAC. The simulation results show that, compared with the conventional PID control algo- rithm, the parallel control algorithm can overcome the influence of parameter change of roll bending system on the control performance, thus improve the anti jamming capability of the system greatly, reduce the dependence of con- trol performance on the accuracy of the analytical model, enhance the tracking performance of hydraulic roll bending loop for the hydraulic and roll bending force and increase system response speed. The results indicate that the CMAC-P1D coupling control strategy for hydraulic roll bending system is effective.展开更多
The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes...The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.展开更多
Based on the CMAC (cerebellar model articulation controller) model and Lyapunov stability law,a controller design method using cost function was proposed,the parameter selecting method of the controller was obtained b...Based on the CMAC (cerebellar model articulation controller) model and Lyapunov stability law,a controller design method using cost function was proposed,the parameter selecting method of the controller was obtained by analyzing the convergence of control algorithms and the stability of the control system.The strategy is applicable to the process where output can be measured and a CMAC model has been obtained.A simulation example is given to demonstrate the correctness and practicality of the proposed strategy.展开更多
文摘This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized;that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of the proposed control system so that the stability of the system can be guaranteed. The simulation results of three-link De-icing robot manipulator are provided to verify the effectiveness of the proposed control methodology.
基金supported by the National Natural Science Foundation of China(Nos.6117075,60835004)the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA111004,2012AA112312)
文摘In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.
基金This project is supported by National Natural Science Foundation of China (No.59990470).
文摘In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.
基金Item Sponsored by National High-Tech Research and Development Program(863Program)of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Hebei Provincial Science and Technology Project of China(10212101D)
文摘The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise mathemati- cal model for control. So, a new method for establishing a hydraulic roll bending control system is put forward by cerebellar model articulation controller (CMAC) neural network and proportional-integral-derivative (PID) coupling control strategy. The non-linear relationship between input and output can be achieved by the concept mapping and the actual mapping of CMAC. The simulation results show that, compared with the conventional PID control algo- rithm, the parallel control algorithm can overcome the influence of parameter change of roll bending system on the control performance, thus improve the anti jamming capability of the system greatly, reduce the dependence of con- trol performance on the accuracy of the analytical model, enhance the tracking performance of hydraulic roll bending loop for the hydraulic and roll bending force and increase system response speed. The results indicate that the CMAC-P1D coupling control strategy for hydraulic roll bending system is effective.
基金The Natural Science Foundation of Jiangsu Province (BK200402)Key Project of Chinese Ministry of Education(105088)
文摘The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.
文摘Based on the CMAC (cerebellar model articulation controller) model and Lyapunov stability law,a controller design method using cost function was proposed,the parameter selecting method of the controller was obtained by analyzing the convergence of control algorithms and the stability of the control system.The strategy is applicable to the process where output can be measured and a CMAC model has been obtained.A simulation example is given to demonstrate the correctness and practicality of the proposed strategy.