AIM: To establish a method for optical sections of HepG2 human hepatoblastoma cells with confocal laser scanning microscope (CLSM) and to study the spatial structure of filamentous actin (F-actin) in HepG2 cells. METH...AIM: To establish a method for optical sections of HepG2 human hepatoblastoma cells with confocal laser scanning microscope (CLSM) and to study the spatial structure of filamentous actin (F-actin) in HepG2 cells. METHODS: HepG2 cells were stained with FITC-phalloidin that specifically binds F-actin, with propidium iodide (PI) to the nucleus, and scanned with a CLSM to generate optically sectioned images. A series of optical sections taken successively at different focal levels in steps of 0.7 μm were reconstructed with the CLSM reconstruction program. RESULTS: CLSM images showed that the FITC-stained Factin was abundant microfilament bundles parallel or netted through the whole cell and its processes. Most F-actin microfilaments extended through the cell from one part toward the other or run through the process. Some microfilaments were attached to the plasma membrane, or formed a structural bridge connecting to the neighboring cells. CONCLUSION: A method for double labeling HepG2 human hepatoblastoma cells and CLSM imaging F-actin microfilaments and nuclei by image thin optical sections and spatial structure was developed. It provides a very useful way to study the spatial structure of F-actin.展开更多
LTE-A present deployment strategies are likely to overcome the User Equipment (UE) performance degradation, in certain parts of the topology incorporated with coverage block holes, due to the presence of high rise bui...LTE-A present deployment strategies are likely to overcome the User Equipment (UE) performance degradation, in certain parts of the topology incorporated with coverage block holes, due to the presence of high rise buildings. It also promises to serve the increase of high user density, which otherwise results in capacity exhaustion of the macro cells. LTE-A addresses these challenges with new features such as small cell and femto cell in its recent releases. Small cell is a low-cost alternative to macro cell in rural and hard-to-reach areas and its installation at strategic points overcomes the capacity and coverage problem. In contrast, Heterogeneous network with its ubiquitous coverage can deliver high-speed data. In this paper, several LTE Key performance indicators e.g. average UE throughput, average area throughput, spectral efficiency, fairness index are analyzed between small cell network and Heterogeneous network in close loop spatial multiplexing mode (CLSM). Besides, we also emphasize on the point to find out the best suited network architecture for overpopulated and densely urban region under proportional fair scheduling algorithm.展开更多
基金Supported by the Medical Research Fund of Guangdong Province,No.2000004
文摘AIM: To establish a method for optical sections of HepG2 human hepatoblastoma cells with confocal laser scanning microscope (CLSM) and to study the spatial structure of filamentous actin (F-actin) in HepG2 cells. METHODS: HepG2 cells were stained with FITC-phalloidin that specifically binds F-actin, with propidium iodide (PI) to the nucleus, and scanned with a CLSM to generate optically sectioned images. A series of optical sections taken successively at different focal levels in steps of 0.7 μm were reconstructed with the CLSM reconstruction program. RESULTS: CLSM images showed that the FITC-stained Factin was abundant microfilament bundles parallel or netted through the whole cell and its processes. Most F-actin microfilaments extended through the cell from one part toward the other or run through the process. Some microfilaments were attached to the plasma membrane, or formed a structural bridge connecting to the neighboring cells. CONCLUSION: A method for double labeling HepG2 human hepatoblastoma cells and CLSM imaging F-actin microfilaments and nuclei by image thin optical sections and spatial structure was developed. It provides a very useful way to study the spatial structure of F-actin.
文摘LTE-A present deployment strategies are likely to overcome the User Equipment (UE) performance degradation, in certain parts of the topology incorporated with coverage block holes, due to the presence of high rise buildings. It also promises to serve the increase of high user density, which otherwise results in capacity exhaustion of the macro cells. LTE-A addresses these challenges with new features such as small cell and femto cell in its recent releases. Small cell is a low-cost alternative to macro cell in rural and hard-to-reach areas and its installation at strategic points overcomes the capacity and coverage problem. In contrast, Heterogeneous network with its ubiquitous coverage can deliver high-speed data. In this paper, several LTE Key performance indicators e.g. average UE throughput, average area throughput, spectral efficiency, fairness index are analyzed between small cell network and Heterogeneous network in close loop spatial multiplexing mode (CLSM). Besides, we also emphasize on the point to find out the best suited network architecture for overpopulated and densely urban region under proportional fair scheduling algorithm.