期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In-Plane Bearing Capacity of CFST Truss Arch Bridges with Geometric Defects
1
作者 Chao Luo Zhengsong Xiang +3 位作者 Yin Zhou Dingsong Qin Tianlei Cheng Qizhi Tang 《Structural Durability & Health Monitoring》 2025年第3期683-703,共21页
Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of... Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges.The effects of antisymmetric defect on the ultimate bearing capacity,failure mode,structural response,and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed.On this basis,numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios.The initial defect formof the archwas obtained by using theoretical deduction,and the theoretical basis for the weakening of the ultimate bearing capacity of the arch bridge caused by geometric defects was clarified.Results indicate that the antisymmetric defect does not change the four-hinge failure mode of the model arch under quarter-point loading but increases the local cracking area and crack density of the concrete inside the pipe.The sine geometric defect with an amplitude of L/250 resulted in a 44.4%decrease in the yield load of the single hinge of the model arch,a 10.5%decrease in the failure load of the four hinges,and a 40.9%increase in themaximum vertical deformation during failure.At the initial stage of loading,the steel pipe and the concrete inside the pipe were subjected to relatively independent forces.After reaching 67%of the ultimate load,the catenary arch ribs began to produce a steel pipe concrete constraint effect.The initial geometric defects resulted in a decrease in the load when the constraint effect occurred.The antisymmetric defects with the same amplitude have a greater impact on the in-plane bearing capacity of the CFST arch bridge than the initial geometric defects with symmetry.The linear deviation at L/4 caused by constructionmust be controlled to be less than L/600 to ensure that the internal bearing capacity of the CFST arch bridge reaches 95%of the design bearing capacity.The structural deformation caused by geometric initial defects increases linearly with the increase in defect amplitude.The bearing capacity is weakened because the structural deflection and bending moment are amplified by initial defects. 展开更多
关键词 Geometric defects cfst arch bridge ultimate bearing capacity model test numerical simulation theoretical derivation
在线阅读 下载PDF
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
2
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength Concrete filled steel tubular cfst arch bridge Stiffening girder Fiber model beam element Construction process
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部