A coupling fluid-structure method with a combination of viscous wake model(VWM),computational fluid dynamics(CFD) and comprehensive structural dynamics(CSD) modules is developed in this paper for rotor unsteady ...A coupling fluid-structure method with a combination of viscous wake model(VWM),computational fluid dynamics(CFD) and comprehensive structural dynamics(CSD) modules is developed in this paper for rotor unsteady airload prediction. The hybrid VWM/CFD solver is employed to model the nonlinear aerodynamic phenomena and complicated rotor wake dynamics;the moderate deflection beam theory is implemented to predict the blade structural deformation; the loose coupling strategy based on the ‘delt method' is used to couple the fluid and structure solvers.Several cases of Helishape 7A rotor are performed first to investigate the effect of elastic deformation on airloads. Then, two challenging forward flight conditions of UH-60 A helicopter rotor are investigated, and the simulated results of wake geometry, chordwise pressure distribution and sectional normal force show excellent agreement with available test data; a comparison with traditional CFD/CSD method is also presented to illustrate the efficiency of the developed method.展开更多
For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics...For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.展开更多
基金supported by the National Natural Science Foundation of China (No. 11302103)
文摘A coupling fluid-structure method with a combination of viscous wake model(VWM),computational fluid dynamics(CFD) and comprehensive structural dynamics(CSD) modules is developed in this paper for rotor unsteady airload prediction. The hybrid VWM/CFD solver is employed to model the nonlinear aerodynamic phenomena and complicated rotor wake dynamics;the moderate deflection beam theory is implemented to predict the blade structural deformation; the loose coupling strategy based on the ‘delt method' is used to couple the fluid and structure solvers.Several cases of Helishape 7A rotor are performed first to investigate the effect of elastic deformation on airloads. Then, two challenging forward flight conditions of UH-60 A helicopter rotor are investigated, and the simulated results of wake geometry, chordwise pressure distribution and sectional normal force show excellent agreement with available test data; a comparison with traditional CFD/CSD method is also presented to illustrate the efficiency of the developed method.
文摘For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties.