A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulen...A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the(highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction(with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-ε models. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as illustrated by the Q-criterion.展开更多
This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated u...This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated using a commercial CFD software (ANSYS-FLUENT). In order to estimate the influence of the bank-propeller effect on the hydrodynamic forces acting on the ship, volume forces representing the propeller are added to Navier-Stokes equations. The numerical simulations are carried out using the equivalent of experiment conditions. The validation of the CFD model is performed by comparing the numerical results to the availa- ble experimental data. For this investigation, the impact of Ship-Bank distance and ship speed on the bank effect are tested with and without propeller. An additional parameter concerning the advance ratio of the propeller is also tested.展开更多
基金Supported by the Ministry of Education Malaysia through RACE(RDU121308)and FRGS(RDU130136)
文摘A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the(highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction(with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-ε models. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as illustrated by the Q-criterion.
文摘This paper presents a numerical investigation of ship manoeuvring under the combined effect of bank and propeller. The incompressible turbulent flow with free surface around the self-propelled hull form is simulated using a commercial CFD software (ANSYS-FLUENT). In order to estimate the influence of the bank-propeller effect on the hydrodynamic forces acting on the ship, volume forces representing the propeller are added to Navier-Stokes equations. The numerical simulations are carried out using the equivalent of experiment conditions. The validation of the CFD model is performed by comparing the numerical results to the availa- ble experimental data. For this investigation, the impact of Ship-Bank distance and ship speed on the bank effect are tested with and without propeller. An additional parameter concerning the advance ratio of the propeller is also tested.