Antibiotics are crucial medications for preventing and treating bacterial infections.However,due to their inherent resistance to degradation,they are also a major component of water pollutants.Semiconductor photocatal...Antibiotics are crucial medications for preventing and treating bacterial infections.However,due to their inherent resistance to degradation,they are also a major component of water pollutants.Semiconductor photocatalysis is considered to be an important green technology for sewage treatment.In this study,BiVO_(4)/Cd S Z-type heterojunction was synthesized and applied in the photocatalytic degradation of tetracycline hydrochloride(TCH).The Z-type heterojunction not only facilitates the separation of photogenerated charges,but also preserves photogenerated electrons with strong reduction capability and photogenerated holes with high oxidation capability.Following visible light irradiation for 90 min,the efficiency of BiVO_(4)/Cd S photocatalytic degradation of TCH reached 93.1%.Moreover,BiVO_(4)/Cd S demonstrates notable degradation efficacy toward other quinolone antibiotics.Free radical trapping experiments and EPR test results suggest that superoxide radicals,hydroxyl radicals,photogenerated electrons,and holes serve as the primary active species in the photocatalytic degradation process of tetracycline hydrochloride.This study offers valuable insights into the development of Z-type heterojunction photocatalysts for the efficient degradation of tetracycline hydrochloride.展开更多
For the efficient harnessing of solar energy and mitigation of environmental pollution,the develop-ment and application of semiconductor photocatalysis technology is paramount.Herein,a novel SubPc-Br/CdS supramolecula...For the efficient harnessing of solar energy and mitigation of environmental pollution,the develop-ment and application of semiconductor photocatalysis technology is paramount.Herein,a novel SubPc-Br/CdS supramolecular array with an S-scheme heterojunction was synthesized through the intermolecu-larπ-stacked self-assembly of subphthalocyanine(SubPc-Br)and nanometer cadmium sulfide(CdS).This self-assembly system features a highly structured architecture and excellent stability.Experiments and ground-state differential charge calculations demonstrate that SubPc-Br and CdS form a built-in electric field during the self-assembly process,a critical factor in promoting the dissociation of electrons and holes.Additionally,this study utilized time-dependent density functional theory(TDDFT)to simulate the dynamic adsorption behavior of excited oxygen molecules on the SubPc-Br/CdS interface for the first time.The analysis of molecular charge differential density under different excited states proved that the addi-tion of SubPc-Br molecules not only improves the photocorrosion resistance of CdS in an O2 adsorption environment but also enhances the production of advanced reactive oxygen species under the synergistic action of h+and·O2-.When subjected to visible light,the degradation efficiency of minocycline(MC)achieved 96.8%within 60 min and maintained 80.3%after 5 cycles.In summary,this study highlights the feasibility of creating advanced S-scheme heterojunction photocatalysts through the strategic incor-poration of organic supramolecules with semiconductor catalysts.展开更多
Efficient photocatalytic water splitting can be significantly enhanced through the careful design of S-scheme heterostructures,which play a pivotal role in optimizing performance.Herein,we report the construction of Z...Efficient photocatalytic water splitting can be significantly enhanced through the careful design of S-scheme heterostructures,which play a pivotal role in optimizing performance.Herein,we report the construction of ZnIn_(2)S_(4)/CdS S-scheme heterojunctions under ambient conditions,based on a sonochemical strategy.This structure is facilitated by the well-matched interface between the(007)plane of layered ZnIn_(2)S_(4)and the(101)plane of CdS,leading to a threshold optical response of 2.12 eV,which optimally aligns with visible light absorption.As a proof of concept,the resulting ZnIn_(2)S_(4)/CdS catalysts demonstrate a remarkable improvement in photocatalytic H_(2) evolution,achieving a rate of 5678.2μmol h^(-1)g^(-1)under visible light irradiation(λ>400 nm).This rate is approximately 10 times higher than that of pristine ZnIn_(2)S_(4)nanosheets(NSs)and about 4.6 times higher than that of CdS nanoparticles(NPs),surpassing the performance of most ZnIn_(2)S_(4)-based photocatalysts reported to date.Moreover,they deliver a robust photocatalytic performance during long-term operation of up to 60 h,showing their potential for use in practical applications.Based on the theoretical calculation and experimental results,it is verified that the movements of electrons and holes in the opposite direction could be induced by the disparity in the work function and the internal electric field within the interfaces,thus facilitating the construction of S-scheme heterojunctions,which fundamentally suppresses carrier recombination while minimizing photocorrosion of ZnIn_(2)S_(4)toward enhanced photocatalytic behaviors.展开更多
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS...The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.展开更多
基金financially supported by the Natural Science Foundation of Shanxi Province(No.202203021221134)。
文摘Antibiotics are crucial medications for preventing and treating bacterial infections.However,due to their inherent resistance to degradation,they are also a major component of water pollutants.Semiconductor photocatalysis is considered to be an important green technology for sewage treatment.In this study,BiVO_(4)/Cd S Z-type heterojunction was synthesized and applied in the photocatalytic degradation of tetracycline hydrochloride(TCH).The Z-type heterojunction not only facilitates the separation of photogenerated charges,but also preserves photogenerated electrons with strong reduction capability and photogenerated holes with high oxidation capability.Following visible light irradiation for 90 min,the efficiency of BiVO_(4)/Cd S photocatalytic degradation of TCH reached 93.1%.Moreover,BiVO_(4)/Cd S demonstrates notable degradation efficacy toward other quinolone antibiotics.Free radical trapping experiments and EPR test results suggest that superoxide radicals,hydroxyl radicals,photogenerated electrons,and holes serve as the primary active species in the photocatalytic degradation process of tetracycline hydrochloride.This study offers valuable insights into the development of Z-type heterojunction photocatalysts for the efficient degradation of tetracycline hydrochloride.
基金the National Natural Science Foun-dation of China(No.22278334)。
文摘For the efficient harnessing of solar energy and mitigation of environmental pollution,the develop-ment and application of semiconductor photocatalysis technology is paramount.Herein,a novel SubPc-Br/CdS supramolecular array with an S-scheme heterojunction was synthesized through the intermolecu-larπ-stacked self-assembly of subphthalocyanine(SubPc-Br)and nanometer cadmium sulfide(CdS).This self-assembly system features a highly structured architecture and excellent stability.Experiments and ground-state differential charge calculations demonstrate that SubPc-Br and CdS form a built-in electric field during the self-assembly process,a critical factor in promoting the dissociation of electrons and holes.Additionally,this study utilized time-dependent density functional theory(TDDFT)to simulate the dynamic adsorption behavior of excited oxygen molecules on the SubPc-Br/CdS interface for the first time.The analysis of molecular charge differential density under different excited states proved that the addi-tion of SubPc-Br molecules not only improves the photocorrosion resistance of CdS in an O2 adsorption environment but also enhances the production of advanced reactive oxygen species under the synergistic action of h+and·O2-.When subjected to visible light,the degradation efficiency of minocycline(MC)achieved 96.8%within 60 min and maintained 80.3%after 5 cycles.In summary,this study highlights the feasibility of creating advanced S-scheme heterojunction photocatalysts through the strategic incor-poration of organic supramolecules with semiconductor catalysts.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.52372063,62204246 and 52401244)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2023QNRC001)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233001,GZC20233006)the China Postdoctoral Science Foundation(Grant No.2024M753526)。
文摘Efficient photocatalytic water splitting can be significantly enhanced through the careful design of S-scheme heterostructures,which play a pivotal role in optimizing performance.Herein,we report the construction of ZnIn_(2)S_(4)/CdS S-scheme heterojunctions under ambient conditions,based on a sonochemical strategy.This structure is facilitated by the well-matched interface between the(007)plane of layered ZnIn_(2)S_(4)and the(101)plane of CdS,leading to a threshold optical response of 2.12 eV,which optimally aligns with visible light absorption.As a proof of concept,the resulting ZnIn_(2)S_(4)/CdS catalysts demonstrate a remarkable improvement in photocatalytic H_(2) evolution,achieving a rate of 5678.2μmol h^(-1)g^(-1)under visible light irradiation(λ>400 nm).This rate is approximately 10 times higher than that of pristine ZnIn_(2)S_(4)nanosheets(NSs)and about 4.6 times higher than that of CdS nanoparticles(NPs),surpassing the performance of most ZnIn_(2)S_(4)-based photocatalysts reported to date.Moreover,they deliver a robust photocatalytic performance during long-term operation of up to 60 h,showing their potential for use in practical applications.Based on the theoretical calculation and experimental results,it is verified that the movements of electrons and holes in the opposite direction could be induced by the disparity in the work function and the internal electric field within the interfaces,thus facilitating the construction of S-scheme heterojunctions,which fundamentally suppresses carrier recombination while minimizing photocorrosion of ZnIn_(2)S_(4)toward enhanced photocatalytic behaviors.
文摘The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.