期刊文献+
共找到8,628篇文章
< 1 2 250 >
每页显示 20 50 100
K-GCN for Identifying Key Nodes in Complex Networks
1
作者 Lin DONG Yufeng LU 《Journal of Mathematical Research with Applications》 2025年第2期260-274,共15页
Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ... Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods. 展开更多
关键词 key nodes complex networks K-SHELL GCN
原文传递
Optimizing wireless sensor network topology with node load consideration
2
作者 Ruizhi CHEN 《虚拟现实与智能硬件(中英文)》 2025年第1期47-61,共15页
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus... Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture. 展开更多
关键词 node load Wireless sensor network K-means clustering Firefly algorithm Topology optimization
在线阅读 下载PDF
Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning
3
作者 Raj Sonani Reham Alhejaili +2 位作者 Pushpalika Chatterjee Khalid Hamad Alnafisah Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3169-3189,共21页
Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes... Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes.Existing machine and deep learning-based anomalies detection methods often rely on centralized training,leading to reduced accuracy and potential privacy breaches.Therefore,this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection(BFL-MND)model.It trains models locally within healthcare clusters,sharing only model updates instead of patient data,preserving privacy and improving accuracy.Cloud and edge computing enhance the model’s scalability,while blockchain ensures secure,tamper-proof access to health data.Using the PhysioNet dataset,the proposed model achieves an accuracy of 0.95,F1 score of 0.93,precision of 0.94,and recall of 0.96,outperforming baseline models like random forest(0.88),adaptive boosting(0.90),logistic regression(0.86),perceptron(0.83),and deep neural networks(0.92). 展开更多
关键词 Authentication blockchain deep learning federated learning healthcare network machine learning wearable sensor nodes
在线阅读 下载PDF
Node Sociability Based Intelligent Routing for Post-Disaster Emergency Networks 被引量:1
4
作者 Li Jiameng Xiong Xuanrui +1 位作者 Liu Min Amr Tolba 《China Communications》 SCIE CSCD 2024年第8期104-114,共11页
In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of ... In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay. 展开更多
关键词 delay tolerant networks Internet of things node sociability routing strategy
在线阅读 下载PDF
Target Controllability of Multi-Layer Networks With High-Dimensional Nodes
5
作者 Lifu Wang Zhaofei Li +1 位作者 Ge Guo Zhi Kong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1999-2010,共12页
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte... This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion. 展开更多
关键词 High-dimensional nodes inter-layer couplings multi-layer networks target controllability
在线阅读 下载PDF
“Half of the Node Records Are Forged?”: The Problemof Node Records Forgery in Ethereum Network
6
作者 Yang Liu Zhiyuan Lin +2 位作者 Yuxi Zhang Lin Jiang Xuan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1713-1729,共17页
Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connect... Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged. 展开更多
关键词 Blockchain ethereum peer-to-peer networks node discovery protocol malicious behavior
在线阅读 下载PDF
The Effect of Key Nodes on theMalware Dynamics in the Industrial Control Network
7
作者 Qiang Fu JunWang +1 位作者 Changfu Si Jiawei Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期329-349,共21页
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be... As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network. 展开更多
关键词 Key nodes dynamic model industrial control network SIMULATION
在线阅读 下载PDF
Aviation armament system-of-systems modeling and identification method of vulnerable nodes based on interdependent network
8
作者 Yaozu WANG Bolin SHANG +3 位作者 Dexiang ZHOU Pengfei LI Renxiang LIN Wenzheng LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期358-372,共15页
Aiming at the problem that it is difficult to build model and identify the vulnerable equipment for aviation armament System-of-Systems(SoS)due to complex equipment interaction relationships and high confrontation,the... Aiming at the problem that it is difficult to build model and identify the vulnerable equipment for aviation armament System-of-Systems(SoS)due to complex equipment interaction relationships and high confrontation,the interdependent network theory is introduced to solve it.Firstly,a two-layer heterogeneous interdependent network model for aviation armament SoS is proposed,which reflects the information interaction,functional dependency and inter-network dependence effectively.Secondly,using the attack cost to describe the confrontation process and taking the comprehensive impact on kill chains as the entry point,the node importance index and the attack cost measurement method are constructed.Thirdly,the identification of vulnerable nodes is transformed into the optimization problem of node combinatorial selection,and the vulnerable node identification method based on tabu search is proposed.Based on vulnerable nodes,a robustness enhancement strategy for aviation armament SoS network is presented.Finally,the above methods are used to an aerial confrontation SoS,and the results verify the rationality and effectiveness of the proposed methods. 展开更多
关键词 Aviation armament System-of-Systems(SoS) Interdependent network Vulnerable node Kill chain Tabu search
原文传递
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
9
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
原文传递
Controllability of Multi-Relational Networks With Heterogeneous Dynamical Nodes
10
作者 Lifu Wang Zhaofei Li +2 位作者 Lianqian Cao Ge Guo Zhi Kong 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2476-2486,共11页
This paper studies the controllability of networked systems,in which the nodes are heterogeneous high-dimensional dynamical systems,and the links between nodes are multi-relational.Our aim is to find controllability c... This paper studies the controllability of networked systems,in which the nodes are heterogeneous high-dimensional dynamical systems,and the links between nodes are multi-relational.Our aim is to find controllability criteria for heterogeneous networks with multi-relational links beyond those only applicable to networks with single-relational links.It is found a network with multi-relational links can be controllable even if each single-relational network topology is uncontrollable,and vice versa.Some sufficient and necessary conditions are derived for the controllability of multi-relational networks with heterogeneous dynamical nodes.For two typical multi-relational networks with star-chain topology and star-circle topology,some easily verified conditions are presented.For illustration and verification,several examples are presented.These findings provide practical insights for the analysis and control of multi-relational complex systems. 展开更多
关键词 Heterogeneous network multi-relational network network controllability node dynamics
在线阅读 下载PDF
Node ranking based on graph curvature and PageRank 被引量:1
11
作者 Hongbo Qu Yu-Rong Song +2 位作者 Ruqi Li Min Li Guo-Ping Jiang 《Chinese Physics B》 2025年第2期496-507,共12页
Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these network... Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The Page Rank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-Page Rank(C-PR), which integrates network curvature and Page Rank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node's influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and Page Rank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis. 展开更多
关键词 important nodes graph curvature complex networks network geometry
原文传递
Nonlinear Relationship and Its Evolutionary Trace between Node Degree and Average Path Length of China Aviation Network Based on Complex Network
12
作者 Cheng Xiangjun Zhang Xiaoxuan Li Yangqi 《Journal of Traffic and Transportation Engineering》 2024年第1期11-22,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001... In order to reveal the complex network characteristics and evolution principle of China aviation network,the relationship between the node degree and the average path length of China aviation network in 1988,1994,2001,2008 and 2015 was studied.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the airline as the edge of the network.On the basis of the statistical data,the node average path length of China aviation network in 1988,1994,2001,2008 and 2015 was calculated.Through regression analysis,it was found that the node degree had a logarithmic relationship with the average length of node path,and the two parameters of the logarithmic relationship had linear evolutionary trace.Key word:China aviation network,complex network,node degree,average length of node path,logarithmic relationship,evolutionary trace. 展开更多
关键词 China aviation network complex network node degree average length of node path logarithmic relationship evolutionary trace.
在线阅读 下载PDF
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
13
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 Bayesian network(BN) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
Graph distillation with network symmetry
14
作者 Feng Lin Jia-Lin He 《Chinese Physics B》 2025年第4期262-271,共10页
Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph d... Graph neural networks(GNNs)have demonstrated excellent performance in graph representation learning.However,as the volume of graph data grows,issues related to cost and efficiency become increasingly prominent.Graph distillation methods address this challenge by extracting a smaller,reduced graph,ensuring that GNNs trained on both the original and reduced graphs show similar performance.Existing methods,however,primarily optimize the feature matrix of the reduced graph and rely on correlation information from GNNs,while neglecting the original graph’s structure and redundant nodes.This often results in a loss of critical information within the reduced graph.To overcome this limitation,we propose a graph distillation method guided by network symmetry.Specifically,we identify symmetric nodes with equivalent neighborhood structures and merge them into“super nodes”,thereby simplifying the network structure,reducing redundant parameter optimization and enhancing training efficiency.At the same time,instead of relying on the original node features,we employ gradient descent to match optimal features that align with the original features,thus improving downstream task performance.Theoretically,our method guarantees that the reduced graph retains the key information present in the original graph.Extensive experiments demonstrate that our approach achieves significant improvements in graph distillation,exhibiting strong generalization capability and outperforming existing graph reduction methods. 展开更多
关键词 graph neural networks graph distillation network symmetry super nodes feature optimization
原文传递
Virtual force node deployment algorithm of field observation instrument based on voronoi diagram
15
作者 HUO Jiuyuan WANG Lei 《Journal of Measurement Science and Instrumentation》 2025年第3期435-445,共11页
Aiming at node deployment in the monitoring area of the field observation instrument network in the cold and arid regions,we propose a virtual force algorithm based on Voronoi diagram(VFAVD),which adopts probabilistic... Aiming at node deployment in the monitoring area of the field observation instrument network in the cold and arid regions,we propose a virtual force algorithm based on Voronoi diagram(VFAVD),which adopts probabilistic sensing model that is more in line with the actual situation.First,the Voronoi diagram is constructed in the monitoring area to determine the Thiessen polygon of each node.Then,the virtual force on each node is calculated,and the node update its position according to the direction and size of the total force,so as to achieve the purpose of improving the network coverage rate.The simulation results show that the proposed algorithm can effectively improve the coverage rate of the network,and also has a good effect on the coverage uniformity. 展开更多
关键词 field observation instrument network node deployment Voronoi diagram virtual force network coverage rate
在线阅读 下载PDF
Critical station identification of metro networks based on the integrated topological-functional algorithm:A case study of Chengdu
16
作者 Zi-Qiang Zeng Sheng-Jie He Wang Tian 《Chinese Physics B》 2025年第2期509-520,共12页
As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly ess... As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience. 展开更多
关键词 critical node metro network topological structure functional operation
原文传递
Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan
17
作者 Nimisha Rajput Amit Kumar +3 位作者 Raghavendra Pal Nishu Gupta Mikko Uitto Jukka Mäkelä 《Computer Modeling in Engineering & Sciences》 2025年第6期3839-3859,共21页
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a... Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations. 展开更多
关键词 Wireless sensor networks(WSNs) energy efficiency reinforcement learning network lifetime dynamic node management autonomous surveillance
在线阅读 下载PDF
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
18
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 Graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
Expression profiling and bioinformatics analysis of serum exosomal circular RNAs in lymph node metastasis of papillary thyroid carcinoma
19
作者 Huiyong Peng Zhangwei Zhu +5 位作者 Jie Xing Qian Xu Changfeng Man Shengjun Wang Yingzhao Liu Zhengdong Zhang 《Journal of Biomedical Research》 2025年第2期155-170,I0001-I0004,共20页
Most papillary thyroid carcinoma(PTC) patients have a good prognosis. However, lymph node metastasis(LNM), the most common manifestation of disease progression, is frequently associated with a poor prognosis.Neverthel... Most papillary thyroid carcinoma(PTC) patients have a good prognosis. However, lymph node metastasis(LNM), the most common manifestation of disease progression, is frequently associated with a poor prognosis.Nevertheless, few studies have focused on the underlying mechanisms of LNM. In the current study, we aimed to investigate the potential role of exosomal circRNAs that contribute to LNM in PTC. We identified 9 000 differentially expressed exosomal circRNAs in PTC patients with LNM, including 684 upregulated and 2 193 downregulated circRNAs. Functional enrichment analysis revealed that these differentially expressed circRNAs were primarily involved in a variety of molecular and signaling pathways correlated with PTC progression and LNM. Through bioinformatics analysis, we identified 14 circRNA-miRNA-mRNA networks related to LNM-associated signaling pathways in PTC. Moreover, both circTACC2-miR-7-EGFR and circBIRC6-miR-24-3p-BCL2L11 axes were verified for their potential involvement in PTC with LNM. Additionally, we identified four upregulated circRNA-related hub genes and eight hub genes correlated with downregulated circRNAs, some of which were validated as being potentially involved in LNM in PTC. Collectively, our findings provide a novel framework for an in-depth investigation of the function of dysregulated exosomal circRNAs and their potential as biomarkers in PTC patients with LNM. 展开更多
关键词 papillary thyroid carcinoma EXOSOME circular RNA regulatory network lymph node metastasis
暂未订购
Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks
20
作者 LU Pengli YANG Peishi LIAO Yonggang 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期510-520,共11页
Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive atte... Essential proteins are an indispensable part of cells and play an extremely significant role in genetic disease diagnosis and drug development.Therefore,the prediction of essential proteins has received extensive attention from researchers.Many centrality methods and machine learning algorithms have been proposed to predict essential proteins.Nevertheless,the topological characteristics learned by the centrality method are not comprehensive enough,resulting in low accuracy.In addition,machine learning algorithms need sufficient prior knowledge to select features,and the ability to solve imbalanced classification problems needs to be further strengthened.These two factors greatly affect the performance of predicting essential proteins.In this paper,we propose a deep learning framework based on temporal convolutional networks to predict essential proteins by integrating gene expression data and protein-protein interaction(PPI)network.We make use of the method of network embedding to automatically learn more abundant features of proteins in the PPI network.For gene expression data,we treat it as sequence data,and use temporal convolutional networks to extract sequence features.Finally,the two types of features are integrated and put into the multi-layer neural network to complete the final classification task.The performance of our method is evaluated by comparing with seven centrality methods,six machine learning algorithms,and two deep learning models.The results of the experiment show that our method is more effective than the comparison methods for predicting essential proteins. 展开更多
关键词 temporal convolutional networks node2vec protein-protein interaction(PPI)network essential proteins gene expression data
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部