In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interi...In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver' s ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.展开更多
为了降低拖拉机驾驶室耳旁噪声,采集了拖拉机驾驶室耳旁噪声及左右车窗的加速度信号,并对其进行频谱分析;通过分析得到了拖拉机驾驶室耳旁噪声和左右车窗加速度的频率成分大部分与发动机的转速有关(即基频都是发动机转速一半)。提出了...为了降低拖拉机驾驶室耳旁噪声,采集了拖拉机驾驶室耳旁噪声及左右车窗的加速度信号,并对其进行频谱分析;通过分析得到了拖拉机驾驶室耳旁噪声和左右车窗加速度的频率成分大部分与发动机的转速有关(即基频都是发动机转速一半)。提出了一种基于误差信号的FX-LMS主动降噪方法,建立了基于误差信号FX-LMS算法的Simulink仿真模型,并将拖拉机驾驶室内耳旁噪声信号导入到Simulink仿真模型中,把误差信号作为参考信号,对模型进行仿真分析。仿真结果表明:基于误差信号的FX-LMS主动降噪方法在拖拉机驾驶室耳旁有10~15 d B的降噪效果。展开更多
基金Sponsored by the National Natural Science Foundation of China (50875022)Research Foundation of Beijing Institute of Technology(20070342012)
文摘In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver' s ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.
文摘为了降低拖拉机驾驶室耳旁噪声,采集了拖拉机驾驶室耳旁噪声及左右车窗的加速度信号,并对其进行频谱分析;通过分析得到了拖拉机驾驶室耳旁噪声和左右车窗加速度的频率成分大部分与发动机的转速有关(即基频都是发动机转速一半)。提出了一种基于误差信号的FX-LMS主动降噪方法,建立了基于误差信号FX-LMS算法的Simulink仿真模型,并将拖拉机驾驶室内耳旁噪声信号导入到Simulink仿真模型中,把误差信号作为参考信号,对模型进行仿真分析。仿真结果表明:基于误差信号的FX-LMS主动降噪方法在拖拉机驾驶室耳旁有10~15 d B的降噪效果。