To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ...To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit.展开更多
针对无边缘主动轮廓模型(Active contours without edges,C-V)难以分割灰度分布不均匀的甲状腺超声图像,本文提出结合局部信息改进的C-V超声图像分割模型。该方法根据局部信息具有不受灰度分布影响的拟合特性,利用图像局部拟合信息构造...针对无边缘主动轮廓模型(Active contours without edges,C-V)难以分割灰度分布不均匀的甲状腺超声图像,本文提出结合局部信息改进的C-V超声图像分割模型。该方法根据局部信息具有不受灰度分布影响的拟合特性,利用图像局部拟合信息构造一种新的速度函数,使速度函数依据图像局部灰度变化控制曲线的演化速率;然后将该速度函数引入到C-V模型中,具有全局分割能力。实验结果表明,本文方法可以实现对灰度分布不均匀的甲状腺肿瘤超声图像的准确分割,且分割效率也有所提高。展开更多
基金financially supported by the Ministry of Science and Technology of China(Nos.2022YFF0801201,2021YFC2900300)the National Natural Science Foundation of China(Nos.41872245,U1911202)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010666)。
文摘To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit.
文摘针对无边缘主动轮廓模型(Active contours without edges,C-V)难以分割灰度分布不均匀的甲状腺超声图像,本文提出结合局部信息改进的C-V超声图像分割模型。该方法根据局部信息具有不受灰度分布影响的拟合特性,利用图像局部拟合信息构造一种新的速度函数,使速度函数依据图像局部灰度变化控制曲线的演化速率;然后将该速度函数引入到C-V模型中,具有全局分割能力。实验结果表明,本文方法可以实现对灰度分布不均匀的甲状腺肿瘤超声图像的准确分割,且分割效率也有所提高。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773172)香港特区政府研究资助局研究项目(No.CUHK/4185/00E)+2 种基金香港中文大学研究基金(No.2050345)江苏省青蓝工程南京信息工程大学科研基金