期刊文献+
共找到2,001篇文章
< 1 2 101 >
每页显示 20 50 100
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
1
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 HARD c-means cLUSTERING algorithm FUZZY c-means cLUSTERING algorithm Suppressed FUZZY c-means cLUSTERING algorithm Suppressed RATE
在线阅读 下载PDF
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
2
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(FcM) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Distributed C-Means Algorithm for Big Data Image Segmentation on a Massively Parallel and Distributed Virtual Machine Based on Cooperative Mobile Agents
3
作者 Fatéma Zahra Benchara Mohamed Youssfi +2 位作者 Omar Bouattane Hassan Ouajji Mohammed Ouadi Bensalah 《Journal of Software Engineering and Applications》 2015年第3期103-113,共11页
The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is th... The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency. 展开更多
关键词 Multi-Agent System DISTRIBUTED algorithm BIG Data IMAGE Segmentation MRI IMAGE c-means algorithm Mobile Agent
在线阅读 下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
4
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images Fuzzy clustering c-means algorithm Image Segmentation
在线阅读 下载PDF
基于改进的模糊C-Means航迹聚类方法研究 被引量:19
5
作者 王超 王明明 王飞 《中国民航大学学报》 CAS 2013年第3期14-18,共5页
为指导飞行程序的改善和发现管制员的指挥模式,在分析历史飞行航迹特征基础上,应用最小描绘长度(MDL)原理对航迹特征点进行划分,运用融合了遗传算法和模拟退火算法的改进的模糊C-Means算法对特征点进行聚类,通过最长公共子序列(LCS)算... 为指导飞行程序的改善和发现管制员的指挥模式,在分析历史飞行航迹特征基础上,应用最小描绘长度(MDL)原理对航迹特征点进行划分,运用融合了遗传算法和模拟退火算法的改进的模糊C-Means算法对特征点进行聚类,通过最长公共子序列(LCS)算法得到航迹相似性矩阵,利用矩阵得到航迹簇,最后形成中心航迹,算例仿真验证了新算法的有效性。 展开更多
关键词 航迹聚类 遗传模拟退火算法 模糊c—Means 最长公共子序列
在线阅读 下载PDF
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
6
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 cLUSTERING OPTIMIZATION K-means Fuzzy c-means Firefly algorithm F-Firefly
在线阅读 下载PDF
面向不平衡数据集融合Canopy和K-means的SMOTE改进算法 被引量:11
7
作者 郭朝有 许喆 +1 位作者 马砚堃 曹蒙蒙 《科学技术与工程》 北大核心 2020年第22期9069-9074,共6页
针对SMOTE算法和随机森林可较好解决不平衡数据集的分类问题但对少数类样本分类效果还有待提高的问题,融合Canopy和K-means两种聚类算法,设计了C-K-SMOTE改进算法。先后利用Canopy算法进行快速近似聚类,再利用K-means算法进行精准聚类,... 针对SMOTE算法和随机森林可较好解决不平衡数据集的分类问题但对少数类样本分类效果还有待提高的问题,融合Canopy和K-means两种聚类算法,设计了C-K-SMOTE改进算法。先后利用Canopy算法进行快速近似聚类,再利用K-means算法进行精准聚类,得到精准聚类簇,最后利用SMOTE算法增加少数类样本数量,使数据趋于平衡。选取公开数据集KEEL(knowledge extraction on evolutionary learning)数据库中的不平衡数据集,结合随机森林分类模型进行了实验验证,实验表明C-K-SMOTE算法可有效平衡不平衡数据集。 展开更多
关键词 canopy算法 K-means算法 SMOTE算法 c-K-SMOTE算法 随机森林 不平衡数据集 分类问题
在线阅读 下载PDF
一种改进的 Fuzzy c-means 聚类算法 被引量:4
8
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFcM
在线阅读 下载PDF
Fuzzy C-Means算法中隶属度信息在特征空间的分布特性分析及改进方法 被引量:2
9
作者 胡世英 周源华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第1期67-72,共6页
首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明... 首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明这两种方法均起到了较好的效果. 展开更多
关键词 FUZZY 隶属度 选择注意性参数 置信度 FcM算法
在线阅读 下载PDF
空间加权距离的GIS数据Fuzzy C-means聚类方法与应用分析 被引量:4
10
作者 王海起 张腾 +1 位作者 彭佳琦 董倩楠 《地球信息科学学报》 CSCD 北大核心 2013年第6期854-861,共8页
Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、... Fuzzy c-means聚类常采用普通欧式距离进行相似性度量,对于地理空间对象来说,聚类不仅应考虑属性特征的相似性,还应考虑对象的空间邻近性。本文基于普通欧式距离提出了多种形式的空间加权距离公式,不同的距离公式分别在两个坐标方向、各属性上进行加权,权重向量既可以度量空间位置特征、属性特征的作用大小,也可度量位置距离在X、Y空间方向上的各向同性或异性程度。权重向量的获取以空间对象相似性的模糊函数为评价目标,通过动态学习率的梯度下降算法优化计算,并将空间加权距离引入到fuzzy c-means聚类算法中以取代普通欧式距离。本文以空间数据集Meuse为应用实例,分别采用不同形式的空间加权距离进行FCM模糊聚类,类数取为2-10类,通过PC、PE和Xie-Beni等聚类有效性指标的比较表明:空间加权距离的聚类效果要优于普通距离,且在空间数据聚类分析中,除属性信息外位置等空间特征信息同样起到了重要作用。 展开更多
关键词 空间加权距离 GIS数据 Fuzzyc—means聚类 梯度下降学习算法
原文传递
基于K-means算法和FCM算法的聚类研究 被引量:3
11
作者 崔文迪 蔡佳佳 《现代计算机》 2007年第10期7-9,共3页
采用K-means算法和FCM算法实现对47个城市竞争力的聚类分析,选择较为简便的聚类有效性函数用于聚类结果的检验,得到了两种有效的聚类算法的实现方式,并验证该方法的合理性。
关键词 模糊聚类 K—means FcM
在线阅读 下载PDF
基于改进动麦优化模糊C-均值的WSN分簇信誉路由算法
12
作者 韩冰青 温锦笑 《计算机应用研究》 北大核心 2026年第1期240-246,共7页
针对无线传感器网络中分簇不均、节点能耗高及路由安全性低等问题,提出一种基于改进动麦优化模糊C-means的WSN分簇信誉路由算法(IFCAOR)。首先利用改进的动麦算法优化模糊C-means算法的初始聚类中心,提高网络分簇效果。其次,在簇首选举... 针对无线传感器网络中分簇不均、节点能耗高及路由安全性低等问题,提出一种基于改进动麦优化模糊C-means的WSN分簇信誉路由算法(IFCAOR)。首先利用改进的动麦算法优化模糊C-means算法的初始聚类中心,提高网络分簇效果。其次,在簇首选举阶段,综合节点能量、距离等因素,动态选择簇首,实现负载均衡。最后,在数据传输阶段,采用单多跳轮询机制,并结合中继节点的负载、信誉值和路径衰减等构建路由适应度函数,利用改进动麦算法规划高效安全的传输路由,降低节点能耗并提高路由安全性。仿真结果表明,IFCAOR算法的网络生命周期较LEACH、IFCRA和HMABFOA分别提升93%、49.6%和34.3%,IFCAOR算法能有效平衡网络负载,延长网络生命周期。 展开更多
关键词 无线传感器网络 模糊c-均值 动麦优化算法 分簇路由 能耗均衡
在线阅读 下载PDF
A 3-Dimensional Cargo Loading Algorithm for the Conveyor-Type Loading System
13
作者 Hyeonbin Jeong Young Tae Ryu +1 位作者 Byung Duk Song Sang-Duck Lee 《Computer Modeling in Engineering & Sciences》 2025年第3期2739-2769,共31页
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre... This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management. 展开更多
关键词 3-dimensional loading automated loading system B2c logistics cargo loading algorithm conveyortype loading
在线阅读 下载PDF
结合K-means算法的C-V分割模型改进方法——以黄斑水肿区域分割为例 被引量:3
14
作者 李晓凯 李超鹏 《计算机应用》 CSCD 北大核心 2020年第S02期204-209,共6页
光学相干断层成像(OCT)是眼科用于检测糖尿病性黄斑水肿(DME)病变部位的主要成像技术。针对OCT图像中DME水肿区域的高精准提取问题,提出了一种结合K-means算法的C-V分割模型改进方法。首先用变分水平集函数替代C-V模型中的水平集函数,终... 光学相干断层成像(OCT)是眼科用于检测糖尿病性黄斑水肿(DME)病变部位的主要成像技术。针对OCT图像中DME水肿区域的高精准提取问题,提出了一种结合K-means算法的C-V分割模型改进方法。首先用变分水平集函数替代C-V模型中的水平集函数,终止C-V模型演化过程中的初始轮廓曲线重新初始化问题,提高分割模型的计算效率;在此基础上利用K-means算法对视网膜轮廓区域进行分割,将其作为固定的初始轮廓曲线,克服C-V模型对初始轮廓区域的敏感问题,提高分割结果的精度。实验结果表明:所提方法与测地活动轮廓(GAC)模型和选择性二值高斯滤波正则化水平集(SBGFRLS)模型相比,在迭代次数上分别减小了约90.8%和69%;在时间上分别减少了约99.3%和82.5%;所提方法的分割精确度、召回度和Dice相似性系数分别为97.95%、98.90%、98.42%。所提分割方法能够有效提高DME水肿区域边界的分割精度,同时降低了计算的复杂度,可为临床诊断提供技术支撑。 展开更多
关键词 光学相干断层成像 K-means算法 c-V模型 水平集 糖尿病性黄斑水肿分割
在线阅读 下载PDF
基于优化模糊C-means算法的不平衡大数据分类研究
15
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊c-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
在线阅读 下载PDF
基于密度的模糊C均值聚类算法锂电池均衡策略研究
16
作者 吴铁洲 祝磊 +1 位作者 张敏 王越洋 《武汉理工大学学报》 2025年第1期84-90,共7页
在储能应用中,锂电池的不一致性将严重影响储能系统的运行效果和使用寿命,均衡控制是解决锂电池不一致的重要手段。文中考虑锂离子电池的滞回特性,建立了三阶动态等效电路模型,并结合建立的电池模型对电池组均衡变量SOC进行了研究和估... 在储能应用中,锂电池的不一致性将严重影响储能系统的运行效果和使用寿命,均衡控制是解决锂电池不一致的重要手段。文中考虑锂离子电池的滞回特性,建立了三阶动态等效电路模型,并结合建立的电池模型对电池组均衡变量SOC进行了研究和估计。基于Buck-Boost的电路设计了电池组间均衡拓扑结构,在传统的模糊C均值聚类算法基础上,引入样本密度的概念,设计了基于密度的模糊C均值聚类算法均衡策略,并与均值-差值均衡算法做对比。最后在MATLAB/Simulink中进行了均衡策略的对比仿真验证,结果表明,基于密度的模糊C均值聚类算法均衡控制策略能够提高电池组的均衡效果,提高了均衡速度,为储能系统均衡控制提供了研究方向,具有重要的应用价值。 展开更多
关键词 储能系统 均衡控制 样本密度 模糊c均值聚类算法 均值-差值均衡算法
原文传递
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:4
17
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(c2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
在线阅读 下载PDF
The Convergence of the Steepest Descent Algorithm for D.C.Optimization 被引量:1
18
作者 SONG Chun-ling XIA Zun-quan 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期131-136,共6页
Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and c... Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and constrained quasi-differentiable programming is proved. 展开更多
关键词 nonsmooth optimization D. c. optimization upper semi-continuous lower semi-continuous steepest descent algorithm cONVERGENcE
在线阅读 下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
19
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFcM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
上一页 1 2 101 下一页 到第
使用帮助 返回顶部