The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client pr...The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties.展开更多
Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices ...Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers.Nevertheless,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers.Additionally,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for training.In this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training models.As a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning process.WebFLex is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous devices.Furthermore,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central server.WebFLex has actually been measured in various setups using the MNIST dataset.Experimental results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data aggregation.In addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network variability.Additionally,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.展开更多
Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients m...Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.展开更多
Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical o...Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.展开更多
目的 设计一个基于移动物联网(Mobile Internet of Things,MIoT)的健康管理平台,实现医疗设备的智能化管理。方法 基于MIoT的健康管理平台构建由感知层、网络层、平台层以及应用层组成的系统架构,感知层通过三维加速传感器与射频识别标...目的 设计一个基于移动物联网(Mobile Internet of Things,MIoT)的健康管理平台,实现医疗设备的智能化管理。方法 基于MIoT的健康管理平台构建由感知层、网络层、平台层以及应用层组成的系统架构,感知层通过三维加速传感器与射频识别标签实现数据采集,网络层运用5G切片技术结合无线入侵检测系统和无线网络控制器传输数据,云平台集成实时流处理与批量分析引擎,应用层通过智能算法实现医疗设备的智能化管理。比较基于MIoT的健康管理平台应用前后医疗设备调配次数、设备调配响应时间、调配差错台数、设备平均维修周期、设备终末维护合格率、运维支出成本以及维修维保金额。结果 基于MIoT的健康管理平台应用后,医疗设备使用率、医疗设备调配次数、设备终末维护合格率与平台应用前比较均显著提升,差异有统计学意义(P<0.05),设备调配响应时间、调配差错台数、设备平均维修周期、运维支出成本、维修维保金额均显著降低,差异有统计学意义(P<0.05)。结论 基于MIoT的健康管理平台在医疗设备智能化管理中能够显著提升医疗设备使用效率,减少医疗设备的维护成本,为医院医疗设备的智能化管理提供参考。展开更多
基金supported by the National Natural Science Foundation of China(Nos.62072411,62372343,62402352,62403500)the Key Research and Development Program of Hubei Province(No.2023BEB024)the Open Fund of Key Laboratory of Social Computing and Cognitive Intelligence(Dalian University of Technology),Ministry of Education(No.SCCI2024TB02).
文摘The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties.
基金This work has been funded by King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project Number(RSPD2024R857).
文摘Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers.Nevertheless,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers.Additionally,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for training.In this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training models.As a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning process.WebFLex is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous devices.Furthermore,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central server.WebFLex has actually been measured in various setups using the MNIST dataset.Experimental results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data aggregation.In addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network variability.Additionally,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
基金supported by Key Research and Development Program of China (No.2022YFC3005401)Key Research and Development Program of Yunnan Province,China (Nos.202203AA080009,202202AF080003)+1 种基金Science and Technology Achievement Transformation Program of Jiangsu Province,China (BA2021002)Fundamental Research Funds for the Central Universities (Nos.B220203006,B210203024).
文摘Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.
文摘Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.
文摘目的 设计一个基于移动物联网(Mobile Internet of Things,MIoT)的健康管理平台,实现医疗设备的智能化管理。方法 基于MIoT的健康管理平台构建由感知层、网络层、平台层以及应用层组成的系统架构,感知层通过三维加速传感器与射频识别标签实现数据采集,网络层运用5G切片技术结合无线入侵检测系统和无线网络控制器传输数据,云平台集成实时流处理与批量分析引擎,应用层通过智能算法实现医疗设备的智能化管理。比较基于MIoT的健康管理平台应用前后医疗设备调配次数、设备调配响应时间、调配差错台数、设备平均维修周期、设备终末维护合格率、运维支出成本以及维修维保金额。结果 基于MIoT的健康管理平台应用后,医疗设备使用率、医疗设备调配次数、设备终末维护合格率与平台应用前比较均显著提升,差异有统计学意义(P<0.05),设备调配响应时间、调配差错台数、设备平均维修周期、运维支出成本、维修维保金额均显著降低,差异有统计学意义(P<0.05)。结论 基于MIoT的健康管理平台在医疗设备智能化管理中能够显著提升医疗设备使用效率,减少医疗设备的维护成本,为医院医疗设备的智能化管理提供参考。