Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ...Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.展开更多
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff...The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
文摘Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.
文摘The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.