This paper considers a typical mutual interference system of four-dimensionalspecies, its bounded, extermination stability are studied, and their necessary-sufficientcondition are given, and their ecology meaning set ...This paper considers a typical mutual interference system of four-dimensionalspecies, its bounded, extermination stability are studied, and their necessary-sufficientcondition are given, and their ecology meaning set forth.展开更多
Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solu...Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.展开更多
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const...The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.展开更多
A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and...A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.展开更多
Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were stu...Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.展开更多
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional...The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.展开更多
A novel real-time predictive control strategy is proposed for path following(PF)and vehicle stability of autonomous electric vehicles under extreme drive conditions.The investigated vehicle configuration is a distribu...A novel real-time predictive control strategy is proposed for path following(PF)and vehicle stability of autonomous electric vehicles under extreme drive conditions.The investigated vehicle configuration is a distributed drive electric vehicle,which allows to independently control the torques of each in-wheel motor(IWM)for superior stability,but bringing control com-plexities.The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model.For PF and direct yaw moment control,the nonlinear model predictive control(NMPC)strategy is developed to minimize PF tracking error and stabilize vehicle,outputting front tires’lateral force and external yaw moment.To mitigate the calcu-lation burdens,the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC.The relaxation function method is adopted to handle the inequality constraints.To prevent vehicle instability and improve steering capacity,the lateral velocity differential of the vehicle is considered in phase plane analysis,and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller.Additionally,the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue,and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically.The target lateral force is transformed as front steering angle command by the inversive tire model,and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization.The validations prove the effectiveness of the proposed strategy in improved steering capacity,desirable PF effects,vehicle stabilization,and real-time applicability.展开更多
文摘This paper considers a typical mutual interference system of four-dimensionalspecies, its bounded, extermination stability are studied, and their necessary-sufficientcondition are given, and their ecology meaning set forth.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the NationalNatural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of China
文摘The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
文摘A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.
文摘Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.
基金Project supported by the National Natural Science Foundation of China(Nos.12250410244,11872151)the Jiangsu Province Education Development Special Project-2022 for Double First-ClassSchool Talent Start-up Fund of China(No.2022r109)the Longshan Scholar Program of Jiangsu Province of China。
文摘The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.
基金supported by the Natural Science Foundation of Beijing(Grant No.3212013)by the National Natural Science Foundation of China(Grant No.51805030)in part by the National Natural Science Foundation of China(Grant No.51775039).
文摘A novel real-time predictive control strategy is proposed for path following(PF)and vehicle stability of autonomous electric vehicles under extreme drive conditions.The investigated vehicle configuration is a distributed drive electric vehicle,which allows to independently control the torques of each in-wheel motor(IWM)for superior stability,but bringing control com-plexities.The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model.For PF and direct yaw moment control,the nonlinear model predictive control(NMPC)strategy is developed to minimize PF tracking error and stabilize vehicle,outputting front tires’lateral force and external yaw moment.To mitigate the calcu-lation burdens,the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC.The relaxation function method is adopted to handle the inequality constraints.To prevent vehicle instability and improve steering capacity,the lateral velocity differential of the vehicle is considered in phase plane analysis,and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller.Additionally,the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue,and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically.The target lateral force is transformed as front steering angle command by the inversive tire model,and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization.The validations prove the effectiveness of the proposed strategy in improved steering capacity,desirable PF effects,vehicle stabilization,and real-time applicability.