This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the chara...This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.展开更多
In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hil...In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.展开更多
The inverse spectral theory of a class of Atkinson-type Sturm-Liouville problems with non-self-adjoint boundary conditions containing the spectral parameter is investigated.Based on the so-called matrix representation...The inverse spectral theory of a class of Atkinson-type Sturm-Liouville problems with non-self-adjoint boundary conditions containing the spectral parameter is investigated.Based on the so-called matrix representations of such problems and a special class of inverse matrix eigenvalue problems,some of the coefficient functions of the corresponding Sturm-Liouville problems are constructed by using priori known two sets of complex numbers satisfying certain conditions.To best understand the result,an algorithm and some examples are posted.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models...The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
A time-spectral method for solution of initial value partial differential equations is outlined. Multivariate Chebyshev series are used to represent all temporal, spatial and physical parameter domains in this general...A time-spectral method for solution of initial value partial differential equations is outlined. Multivariate Chebyshev series are used to represent all temporal, spatial and physical parameter domains in this generalized weighted residual method (GWRM). The approximate solutions obtained are thus analytical, finite order multivariate polynomials. The method avoids time step limitations. To determine the spectral coefficients, a system of algebraic equations is solved iteratively. A root solver, with excellent global convergence properties, has been developed. Accuracy and efficiency are controlled by the number of included Chebyshev modes and by use of temporal and spatial subdomains. As examples of advanced application, stability problems within ideal and resistive magnetohydrodynamics (MHD) are solved. To introduce the method, solutions to a stiff ordinary differential equation are demonstrated and discussed. Subsequently, the GWRM is applied to the Burger and forced wave equations. Comparisons with the explicit Lax-Wendroff and implicit Crank-Nicolson finite difference methods show that the method is accurate and efficient. Thus the method shows potential for advanced initial value problems in fluid mechanics and MHD.展开更多
Temporal and spatial subdomain techniques are proposed for a time-spectral method for solution of initial-value problems. The spectral method, called the generalised weighted residual method (GWRM), is a generalisatio...Temporal and spatial subdomain techniques are proposed for a time-spectral method for solution of initial-value problems. The spectral method, called the generalised weighted residual method (GWRM), is a generalisation of weighted residual methods to the time and parameter domains [1]. A semi-analytical Chebyshev polynomial ansatz is employed, and the problem reduces to determine the coefficients of the ansatz from linear or nonlinear algebraic systems of equations. In order to avoid large memory storage and computational cost, it is preferable to subdivide the temporal and spatial domains into subdomains. Methods and examples of this article demonstrate how this can be achieved.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value prob...A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core...The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...展开更多
The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems ar...The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems are studied.展开更多
基金supported by the Tianjin Municipal Science and Technology Program of China(No.23JCZDJC00070)。
文摘This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.
基金supported by the National Natural Science Foundation of China(No.12461086)the Natural Science Foundation of Hubei Province(No.2022CFC016)。
文摘In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.
基金Supported by the National Natural Science Foundation of China (12261066, 11661059)the Natural Science Foundation of Inner Mongolia (2021MS01020)。
文摘The inverse spectral theory of a class of Atkinson-type Sturm-Liouville problems with non-self-adjoint boundary conditions containing the spectral parameter is investigated.Based on the so-called matrix representations of such problems and a special class of inverse matrix eigenvalue problems,some of the coefficient functions of the corresponding Sturm-Liouville problems are constructed by using priori known two sets of complex numbers satisfying certain conditions.To best understand the result,an algorithm and some examples are posted.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金the National Natural Science Foundation of China(https://www.nsfc.gov.cn/,Project No.11972179)the Natural Science Foundation of Guangdong Province(http://gdstc.gd.gov.cn/,No.2020A1515010685)the Department of Education of Guangdong Province(http://edu.gd.gov.cn/,No.2020ZDZX2008).
文摘The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
文摘A time-spectral method for solution of initial value partial differential equations is outlined. Multivariate Chebyshev series are used to represent all temporal, spatial and physical parameter domains in this generalized weighted residual method (GWRM). The approximate solutions obtained are thus analytical, finite order multivariate polynomials. The method avoids time step limitations. To determine the spectral coefficients, a system of algebraic equations is solved iteratively. A root solver, with excellent global convergence properties, has been developed. Accuracy and efficiency are controlled by the number of included Chebyshev modes and by use of temporal and spatial subdomains. As examples of advanced application, stability problems within ideal and resistive magnetohydrodynamics (MHD) are solved. To introduce the method, solutions to a stiff ordinary differential equation are demonstrated and discussed. Subsequently, the GWRM is applied to the Burger and forced wave equations. Comparisons with the explicit Lax-Wendroff and implicit Crank-Nicolson finite difference methods show that the method is accurate and efficient. Thus the method shows potential for advanced initial value problems in fluid mechanics and MHD.
文摘Temporal and spatial subdomain techniques are proposed for a time-spectral method for solution of initial-value problems. The spectral method, called the generalised weighted residual method (GWRM), is a generalisation of weighted residual methods to the time and parameter domains [1]. A semi-analytical Chebyshev polynomial ansatz is employed, and the problem reduces to determine the coefficients of the ansatz from linear or nonlinear algebraic systems of equations. In order to avoid large memory storage and computational cost, it is preferable to subdivide the temporal and spatial domains into subdomains. Methods and examples of this article demonstrate how this can be achieved.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘A class of nonlocal boundary value probl em s for elliptic systems in the unbounded domains are considered. Under suitable c onditions, the existence of solution and the comparison theorem for the boundary value problems are studied.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金National Natural Science Foundation of China (10477001, 60673056)
文摘The fabrication of high-precision panels for the compact antenna test range (CATR) with a sandwich construction of two aluminum skin-plates and one aluminum middle plate,which are bonded to two aluminum honeycomb core-layers poses a lot of tricky problems. Of them,the force analysis of individual skin-layers and the springback calculation of sandwich are of utmost importance. Under reasonable assumptions,by using Fourier expansion of stress function and power series expansion of deflection function,two boun...
基金The project supported by the National Natural Science Foundation of China
文摘The nonlocal boundary value problems for nonlinear elliptic systems in the unbounded domain are considered. Under suitable conditions the existence of solution and comparison theorem for the boundary value problems are studied.