This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decompositio...This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.展开更多
This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for...This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for the original image and divide the acquired low frequency sub-band into blocks. Then we make singular value decomposition for each block and embed the watermark information in the largest singular value by quantitative method. The watermark can be extracted without the original image. The experimental results show that the algorithm has a good imperceptibility and robustness.展开更多
A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) ca...A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.展开更多
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o...Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.展开更多
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin...In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.展开更多
Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the con...Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the constant modulus criterion and takes full advantage of the noncircular property of the signal of interest (SOI), significantly increasing the output signal-to interference-plus-noise ratio (SINR), enhancing the convergence speed and decreasing the steady-state misadjustment. Since it requires no known training data, the proposed algorithm saves a large amount of the available spectrum. Theoretical analysis and simulation results are presented to demonstrate its superiority over the conventional linear least mean square-based CMA (L-LMS-CMA), the conventional linear recursive least square-based CMA (L-RLS-CMA), WL-LMS-CMA, WL-RLS-CMA and L-UKF-CMA.展开更多
Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the ...Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the signal related data based on a group distributed sensor is an efficient way to infer the various characteristics of the signal sources.In this paper,we propose a particle swarm optimization to estimate multiple co-frequency"blind"source nodes,which is based on the received power data measured by the sensors.To distract the mix signals precisely,a genetic algorithm is applied,and it further improves the estimation performance of the system.The simulation results show the efficiency of the proposed algorithm.展开更多
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estim...A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.展开更多
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural...In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.展开更多
The sign algorithm has been extensively investigated for digital echo cancellation application and other adaptive filtering applications. In this paper, we use the blind averaging Sign-regressor (SR) algorithm for ada...The sign algorithm has been extensively investigated for digital echo cancellation application and other adaptive filtering applications. In this paper, we use the blind averaging Sign-regressor (SR) algorithm for adaptive multiuser detection. It is another least mean square (LMS) algorithm and eliminates the need for multiplication in the adaptive algorithm. The new algorithm not only reduces the calculation complexity but also has good convergence character. Simulations indicate that this algorithm can adapt to the changes of the environment quickly and improve the stability of the SIR.展开更多
In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At...In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.展开更多
This paper presents a new blind XPIC and a new adaptive blind deconvolutional algorithm based on HOS processing, which separates and equalizes the signals in real time. The simulation results demonstrate that the perf...This paper presents a new blind XPIC and a new adaptive blind deconvolutional algorithm based on HOS processing, which separates and equalizes the signals in real time. The simulation results demonstrate that the performance of the proposed adaptive blind algorithm,compared with the conventional algorithms, is outstanding with the feature of feasibility, stability and fast convergence rate.展开更多
A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A mi...A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the beamformer's weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an efficient detection scheme for the future generation of MIMO aided mobile communication systems.展开更多
There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME a...There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
文摘This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.
基金Science and Technology Agency of Henan Province(No.132102210516)
文摘This paper presents a new digital image blind watermarking algorithm based on combination of discrete wavelet transform (DWT) and singular value decomposition (SVD). First of all, we make wavelet decomposition for the original image and divide the acquired low frequency sub-band into blocks. Then we make singular value decomposition for each block and embed the watermark information in the largest singular value by quantitative method. The watermark can be extracted without the original image. The experimental results show that the algorithm has a good imperceptibility and robustness.
基金Supported by the National Natural Science Foundation of China (60372057)
文摘A new blind equalization algorithm based on the modified constant modulus algorithm (MCMA) and dithered signederror constant modulus algorithm (DSE-CMA) is proposed. This dithered signed-error MCMA (DSE-MCMA) can not only reduce the computational complexity, but also recover the phase rotation in the complex channel. Simulation results have verified the analysis and indicated the good property of DSE-MCMA.
基金supported by the National Natural Science Foundation of China(61502522).
文摘Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.
基金supported by the National Natural Science Foundation of China(61201134)the 111 Project(B08038)
文摘In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.
基金supported by the National Natural Science Foundation of China(61573113)the Harbin Science and Technology Innovation Talents(Excellent Discipline Leader)Research Fund(2014RFXXJ074)the National Scholarship([2016]3100)
文摘Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the constant modulus criterion and takes full advantage of the noncircular property of the signal of interest (SOI), significantly increasing the output signal-to interference-plus-noise ratio (SINR), enhancing the convergence speed and decreasing the steady-state misadjustment. Since it requires no known training data, the proposed algorithm saves a large amount of the available spectrum. Theoretical analysis and simulation results are presented to demonstrate its superiority over the conventional linear least mean square-based CMA (L-LMS-CMA), the conventional linear recursive least square-based CMA (L-RLS-CMA), WL-LMS-CMA, WL-RLS-CMA and L-UKF-CMA.
文摘Without any prior information about related wireless transmitting nodes,joint estimation of the position and power of a blind signal combined with multiple co-frequency radio waves is a challenging task.Measuring the signal related data based on a group distributed sensor is an efficient way to infer the various characteristics of the signal sources.In this paper,we propose a particle swarm optimization to estimate multiple co-frequency"blind"source nodes,which is based on the received power data measured by the sensors.To distract the mix signals precisely,a genetic algorithm is applied,and it further improves the estimation performance of the system.The simulation results show the efficiency of the proposed algorithm.
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
文摘A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.
基金supported by the Key Item of Science and Technology Program of Xiangtan City,Hunan Province,China under Grant No. ZJ20071008
文摘In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.
文摘The sign algorithm has been extensively investigated for digital echo cancellation application and other adaptive filtering applications. In this paper, we use the blind averaging Sign-regressor (SR) algorithm for adaptive multiuser detection. It is another least mean square (LMS) algorithm and eliminates the need for multiplication in the adaptive algorithm. The new algorithm not only reduces the calculation complexity but also has good convergence character. Simulations indicate that this algorithm can adapt to the changes of the environment quickly and improve the stability of the SIR.
文摘In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.
文摘This paper presents a new blind XPIC and a new adaptive blind deconvolutional algorithm based on HOS processing, which separates and equalizes the signals in real time. The simulation results demonstrate that the performance of the proposed adaptive blind algorithm,compared with the conventional algorithms, is outstanding with the feature of feasibility, stability and fast convergence rate.
文摘A new semi-blind adaptive beamforming scheme is proposed for multi-input multi-output (MIMO) induced and spacedivision multiple-access based wireless systems that employ high order phase shift keying signaling. A minimum number of training symbols, very close to the number of receiver antenna elements, are used to provide a rough initial least squares estimate of the beamformer's weight vector. A novel cost function combining the constant modulus criterion with decision-directed adaptation is adopted to adapt the beamformer weight vector. This cost function can be approximated as a quadratic form with a closed-form solution, based on which we then derive the recursive least squares (RLS) semi-blind adaptive beamforming algorithm. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study. Our proposed semi-blind RLS beamforming algorithm therefore provides an efficient detection scheme for the future generation of MIMO aided mobile communication systems.
文摘There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.