期刊文献+
共找到1,972篇文章
< 1 2 99 >
每页显示 20 50 100
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
1
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern Traffic emissions Generalized additive model bayesian networks LSTM model
原文传递
Comprehensive review of Bayesian network applications in gastrointestinal cancers
2
作者 Min-Na Zhang Meng-Ju Xue +4 位作者 Bao-Zhen Zhou Jing Xu Hong-Kai Sun Ji-Han Wang Yang-Yang Wang 《World Journal of Clinical Oncology》 2025年第6期45-63,共19页
Gastrointestinal cancers,including esophageal,gastric,colorectal,liver,gallbladder,cholangiocarcinoma,and pancreatic cancers,pose a significant global health challenge due to their high mortality rates and poor progno... Gastrointestinal cancers,including esophageal,gastric,colorectal,liver,gallbladder,cholangiocarcinoma,and pancreatic cancers,pose a significant global health challenge due to their high mortality rates and poor prognosis,particularly when diagnosed at advanced stages.These malignancies,characterized by diverse clinical presentations and etiologies,require innovative approaches for improved management.Bayesian networks(BN)have emerged as a powerful tool in this field,offering the ability to manage uncertainty,integrate heterogeneous data sources,and support clinical decision-making.This review explores the application of BN in addressing critical challenges in gastrointestinal cancers,including the identification of risk factors,early detection,treatment optimization,and prognosis prediction.By integrating genetic predispositions,lifestyle factors,and clinical data,BN hold the potential to enhance survival rates and improve quality of life through personalized treatment strategies.Despite their promise,the widespread adoption of BN is hindered by challenges such as data quality limitations,computational complexities,and the need for greater clinical acceptance.The review concludes with future research directions,emphasizing the development of advanced BN algorithms,the integration of multi-omics data,and strategies to ensure clinical applicability,aiming to fully realize the potential of BN in personalized medicine for gastrointestinal cancers. 展开更多
关键词 Gastrointestinal cancers bayesian networks Heterogeneous data integration Early detection Risk prediction PROGNOSIS Personalized medicine
暂未订购
Dynamic Reliability Assessment Approach for Deepwater Subsea Wellhead Systems via Hybrid Bayesian Networks
3
作者 LI Jia-yi CHANG Yuan-jiang +2 位作者 LIU Xiu-quan XU Liang-bin CHEN Guo-ming 《China Ocean Engineering》 2025年第1期100-110,共11页
The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic ... The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic loads which cause fatigue damage to the SW system,and continuously accumulated fatigue damage leads to fatigue failure of the SW system,rupture,and even blowout accidents.This paper proposes a hybrid Bayesian network(HBN)-based dynamic reliability assessment approach for deepwater SW systems during their service life.In the proposed approach,the relationship between the accumulation of fatigue damage and the fatigue failure probability of the SW system is predicted,only considering normal conditions.The HBN model,which includes the accumulation of fatigue damage under normal conditions and the other factors affecting the fatigue of the SW system,is subsequently developed.When predictive and diagnostic analysis techniques are adopted,the dynamic reliability of the SW system is achieved,and the most influential factors are determined.Finally,corresponding safety control measures are proposed to improve the reliability of the SW system effectively.The results illustrate that the fatigue failure speed increases rapidly when the accumulation fatigue damage is larger than 0.45 under normal conditions and that the reliability of the SW system is larger than 94%within the design life. 展开更多
关键词 deepwater subsea wellhead system RELIABILITY accumulation fatigue damage hybrid bayesian network
在线阅读 下载PDF
Bayesian Network Reconstruction and Iterative Divergence Problem Solving Method Based on Norm Minimization
4
作者 Kuo Li Aimin Wang +2 位作者 Limin Wang Yuetan Zhao Xinyu Zhu 《Computer Modeling in Engineering & Sciences》 2025年第4期617-637,共21页
A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves... A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation. 展开更多
关键词 bayesian norm minimization network reconstruction iterative divergence SPARSITY
在线阅读 下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
5
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer bayesian networks
在线阅读 下载PDF
Bayesian network-based survival prediction model for patients having undergone post-transjugular intrahepatic portosystemic shunt for portal hypertension 被引量:1
6
作者 Rong Chen Ling Luo +3 位作者 Yun-Zhi Zhang Zhen Liu An-Lin Liu Yi-Wen Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1859-1870,共12页
BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managi... BACKGROUND Portal hypertension(PHT),primarily induced by cirrhosis,manifests severe symptoms impacting patient survival.Although transjugular intrahepatic portosystemic shunt(TIPS)is a critical intervention for managing PHT,it carries risks like hepatic encephalopathy,thus affecting patient survival prognosis.To our knowledge,existing prognostic models for post-TIPS survival in patients with PHT fail to account for the interplay among and collective impact of various prognostic factors on outcomes.Consequently,the development of an innovative modeling approach is essential to address this limitation.AIM To develop and validate a Bayesian network(BN)-based survival prediction model for patients with cirrhosis-induced PHT having undergone TIPS.METHODS The clinical data of 393 patients with cirrhosis-induced PHT who underwent TIPS surgery at the Second Affiliated Hospital of Chongqing Medical University between January 2015 and May 2022 were retrospectively analyzed.Variables were selected using Cox and least absolute shrinkage and selection operator regression methods,and a BN-based model was established and evaluated to predict survival in patients having undergone TIPS surgery for PHT.RESULTS Variable selection revealed the following as key factors impacting survival:age,ascites,hypertension,indications for TIPS,postoperative portal vein pressure(post-PVP),aspartate aminotransferase,alkaline phosphatase,total bilirubin,prealbumin,the Child-Pugh grade,and the model for end-stage liver disease(MELD)score.Based on the above-mentioned variables,a BN-based 2-year survival prognostic prediction model was constructed,which identified the following factors to be directly linked to the survival time:age,ascites,indications for TIPS,concurrent hypertension,post-PVP,the Child-Pugh grade,and the MELD score.The Bayesian information criterion was 3589.04,and 10-fold cross-validation indicated an average log-likelihood loss of 5.55 with a standard deviation of 0.16.The model’s accuracy,precision,recall,and F1 score were 0.90,0.92,0.97,and 0.95 respectively,with the area under the receiver operating characteristic curve being 0.72.CONCLUSION This study successfully developed a BN-based survival prediction model with good predictive capabilities.It offers valuable insights for treatment strategies and prognostic evaluations in patients having undergone TIPS surgery for PHT. 展开更多
关键词 bayesian network CIRRHOSIS Portal hypertension Transjugular intrahepatic portosystemic shunt Survival prediction model
暂未订购
Bayesian network-based resilience assessment of interdependent infrastructure systems under optimal resource allocation strategies 被引量:1
7
作者 Jingran Sun Kyle Bathgate Zhanmin Zhang 《Resilient Cities and Structures》 2024年第2期46-56,共11页
Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,unders... Critical infrastructure systems(CISs)play a key role in the socio-economic activity of a society,but are exposed to an array of disruptive events that can greatly impact their function and performance.Therefore,understanding the underlying behaviors of CISs and their response to perturbations is needed to better prepare for,and mitigate the impact of,future disruptions.Resilience is one characteristic of CISs that influences the extent and severity of the impact induced by extreme events.Resilience is often dissected into four dimensions:robustness,redundancy,resourcefulness,and rapidity,known as the“4Rs”.This study proposes a framework to assess the resilience of an infrastructure network in terms of these four dimensions under optimal resource allocation strategies and incorporates interdependencies between different CISs,with resilience considered as a stochastic variable.The proposed framework combines an agent-based infrastructure interdependency model,advanced optimization algorithms,Bayesian network techniques,and Monte Carlo simulation to assess the resilience of an infrastructure network.The applicability and flexibility of the proposed framework is demonstrated with a case study using a network of CISs in Austin,Texas,where the resilience of the network is assessed and a“what-if”analysis is performed. 展开更多
关键词 Infrastructure resilience bayesian network Resilience assessment Infrastructure interdependency Resource allocation
暂未订购
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
8
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
Analysis of traffic safety in airport aircraft activity areas based on bayesian networks and fault trees
9
作者 Ruijun Guo Jiawen Wu +2 位作者 Fan Ji Wanxiang Wang Yuan Yin 《Digital Transportation and Safety》 2024年第1期8-18,共11页
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air... To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports. 展开更多
关键词 bayesian network fault tree analysis minimum cut set structural importance accident cause analysis
在线阅读 下载PDF
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
10
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 bayesian network(BN) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
Wireless ad hoc video transmission:a Bayesian network-based scheme
11
作者 蒋荣欣 田翔 +1 位作者 谢立 陈耀武 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期407-413,共7页
A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality ar... A novel bandwidth prediction and control scheme is proposed for video transmission over an ad boc network. The scheme is based on cross-layer, feedback, and Bayesian network techniques. The impacts of video quality are formulized and deduced. The relevant factors are obtained by a cross-layer mechanism or Feedback method. According to these relevant factors, the variable set and the Bayesian network topology are determined. Then a Bayesian network prediction model is constructed. The results of the prediction can be used as the bandwidth of the mobile ad hoc network (MANET). According to the bandwidth, the video encoder is controlled to dynamically adjust and encode the right bit rates of a real-time video stream. Integrated simulation of a video streaming communication system is implemented to validate the proposed solution. In contrast to the conventional transfer scheme, the results of the experiment indicate that the proposed scheme can make the best use of the network bandwidth; there are considerable improvements in the packet loss and the visual quality of real-time video.K 展开更多
关键词 mobile ad hoc network (MAnet bayesian network CROSS-LAYER IEEE 802. 11 real-time video streaming
在线阅读 下载PDF
Reliability analysis for wireless communication networks via dynamic Bayesian network
12
作者 YANG Shunqi ZENG Ying +2 位作者 LI Xiang LI Yanfeng HUANG Hongzhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1368-1374,共7页
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ... The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network. 展开更多
关键词 dynamic bayesian network(DBN) wireless commu-nication network continuous time bayesian network(CTBN) network reliability
在线阅读 下载PDF
产生“Tuned”模板的Bayesian Networks方法 被引量:8
13
作者 郑肇葆 潘励 虞欣 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第4期304-307,共4页
介绍了Bayesian Networks(简称BNs)产生“Tuned”模板新方法的基本原理以及BNs法与蚁群行为仿真技术和单纯形法组合的方法。通过实际航空影像的实验结果表明,新方法对纹理影像的识别率是令人满意的,同时还将新方法与遗传算法的结果作了... 介绍了Bayesian Networks(简称BNs)产生“Tuned”模板新方法的基本原理以及BNs法与蚁群行为仿真技术和单纯形法组合的方法。通过实际航空影像的实验结果表明,新方法对纹理影像的识别率是令人满意的,同时还将新方法与遗传算法的结果作了对比,结果表明新方法是很有应用前景的。 展开更多
关键词 bayesian netWORKS Tuned模板 影像纹理分类 单纯形法
在线阅读 下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
14
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis bayesian network Gaussian mixture model data incomplete non-imputation.
在线阅读 下载PDF
Modeling of combined Bayesian networks and cognitive framework for decision-making in C2 被引量:8
15
作者 Li Wang Mingzhe Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期812-820,共9页
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac... The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2. 展开更多
关键词 bayesian networks decision support cognitive framework command and control colored Petri nets.
在线阅读 下载PDF
Study of testability measurement method for equipment based on Bayesian network model 被引量:8
16
作者 Lian Guangyao Huang Kaoli Chen Jianhui Wei Zhonglin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1017-1023,共7页
To analyze and evaluate the testability design of equipment, a testability analysis method based on Bayesian network inference model is proposed in the paper. The model can adequately apply testability information and... To analyze and evaluate the testability design of equipment, a testability analysis method based on Bayesian network inference model is proposed in the paper. The model can adequately apply testability information and many uncertainty information of design and maintenance process, so it can analyze testability by and large from Bayesian inference. The detailed procedure to analyze and evaluate testability for equipments by Bayesian network is given in the paper. Its modeling process is simple, its formulation is visual, and the analysis results are more reliable than others. Examples prove that the analysis method based on Bayesian network inference can be applied to testability analysis and evaluation for complex equipments. 展开更多
关键词 design for testability testability analysis and evaluation uncertainty information bayesian network
在线阅读 下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:9
17
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor Dynamic bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
在线阅读 下载PDF
Learning Bayesian network parameters under new monotonic constraints 被引量:8
18
作者 Ruohai Di Xiaoguang Gao Zhigao Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1248-1255,共8页
When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian... When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian networks. In this paper, a new monotonic constraint model is proposed to represent a type of common domain knowledge. And then, the monotonic constraint estimation algorithm is proposed to learn the parameters with the monotonic constraint model. In order to demonstrate the superiority of the proposed algorithm, series of experiments are carried out. The experiment results show that the proposed algorithm is able to obtain more accurate parameters compared to some existing algorithms while the complexity is not the highest. 展开更多
关键词 bayesian networks parameter learning new mono tonic constraint
在线阅读 下载PDF
Target threat estimation based on discrete dynamic Bayesian networks with small samples 被引量:4
19
作者 YE Fang MAO Ying +1 位作者 LI Yibing LIU Xinrui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1135-1142,共8页
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr... The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications. 展开更多
关键词 discrete dynamic bayesian network(DDBN) parameter learning missing data filling bayesian estimation
在线阅读 下载PDF
Risk Assessment of Marine Environments Along the South China Sea and North Indian Ocean on the Basis of a Weighted Bayesian Network 被引量:5
20
作者 LI Ming ZHANG Ren LIU Kefeng 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期521-531,共11页
Marine environments have a considerable influence on the construction of the Chinese 21st Century Maritime Silk Road.Thus,an objective and quantitative risk assessment of marine environments has become a key problem t... Marine environments have a considerable influence on the construction of the Chinese 21st Century Maritime Silk Road.Thus,an objective and quantitative risk assessment of marine environments has become a key problem that must be solved urgently.To deal with the uncertainty in marine environmental risks caused by complex factors and fuzzy mechanisms,a new assessment technique based on a weighted Bayesian network(BN)is proposed.Through risk factor analysis,node selection,structure construc-tion,and parameter learning,we apply the proposed weighted BN-based assessment model for the risk assessment and zonation of marine environments along the Maritime Silk Road.Results show that the model effectively fuses multisource and uncertain envi-ronmental information and provides reasonable risk assessment results,thereby offering technical support for risk prevention and disaster mitigation along the Maritime Silk Road. 展开更多
关键词 marine environment risk assessment bayesian network
在线阅读 下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部