期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Probabilistic Methods in Multi-Class Brain-Computer Interface 被引量:1
1
作者 Ping Yang Xu Lei Tie-Jun Liu Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期12-16,共5页
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discr... Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters. 展开更多
关键词 bayesian linear discriminant analysis brain-computer interface kappa coefficient support vector machine.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部