期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
A Support Vector Machine Based on Bayesian Criterion
1
作者 于传强 郭晓松 +1 位作者 王宇 王振业 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第2期99-104,共6页
SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From th... SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved. 展开更多
关键词 mathematical statistics support vector machine bayesian criterion CLASSIFICATION prior probability SAMPLE
在线阅读 下载PDF
Automatic Estimation of the Number of Soil Profile Layers Using Bayesian Information Criterion
2
作者 JarosLaw Kurek Michal Kruk +2 位作者 Piotr Bilski Simon Rabarijoely Bartosz Swiderski 《通讯和计算机(中英文版)》 2014年第7期565-572,共8页
关键词 贝叶斯信息准则 土壤剖面 估计 岩土工程师 面层 生命科学学院 自动化方法 配置文件
在线阅读 下载PDF
基于复值稀疏Bayesian的系统稳定性辨识
3
作者 谢伟翔 陈安琪 《韶关学院学报》 2024年第6期14-20,共7页
稀疏Bayesian学习是近年来机器学习研究的热点,基于Szeg?核的复值稀疏Bayesian学习算法能提供稀疏的有理逼近.提出基于Szeg?核的复值稀疏Bayesian学习算法来判定单位圆盘内闭环系统的稳定性,该方法具有可给出逼近的解析表达式和适用范... 稀疏Bayesian学习是近年来机器学习研究的热点,基于Szeg?核的复值稀疏Bayesian学习算法能提供稀疏的有理逼近.提出基于Szeg?核的复值稀疏Bayesian学习算法来判定单位圆盘内闭环系统的稳定性,该方法具有可给出逼近的解析表达式和适用范围更广的优点,并且不需要参数控制进行迭代优化,运算速度快.实验结果表明,此方法是有效的. 展开更多
关键词 稀疏bayesian 稳定系统 Szeg?核 稳定性判据
在线阅读 下载PDF
融合OMP和PLS的粮食作物近红外光谱变量选择
4
作者 李四海 朱刚 +1 位作者 刘明奇 董雯 《中国粮油学报》 北大核心 2025年第1期220-224,共5页
为进一步解决正交匹配追踪算法用于近红外光谱定量分析时存在的偏差小、方差大、选择变量较多、模型容易过拟合的问题,提出了一种融合正交匹配追踪和偏最小二乘回归的正交匹配偏最小二乘变量选择方法OMPLS(Orthogonal matching pursuit ... 为进一步解决正交匹配追踪算法用于近红外光谱定量分析时存在的偏差小、方差大、选择变量较多、模型容易过拟合的问题,提出了一种融合正交匹配追踪和偏最小二乘回归的正交匹配偏最小二乘变量选择方法OMPLS(Orthogonal matching pursuit based partial least squares regression)。OMPLS为前向变量选择方法,算法根据OMP回归系数绝对值大小评价光谱变量重要性,使用偏最小二乘回归和贝叶斯信息准则确定剩余光谱变量中的重要变量,最终得到满足给定数量要求的最优变量集合。分别在corn数据集和wheat kernels数据集上进行变量选择实验,根据选择变量个数、RMSEC和RMSEP比较PLS、OMP、OMPLS 3种变量选择方法的性能。实验结果表明:OMPLS方法在corn数据集和Wheat kernels数据集上选择变量个数、RMSEP值均小于OMP方法,表明模型泛化能力有了一定程度的提高。OMPLS变量选择方法以BIC指标作为模型选择准则,在模型复杂度和预测能力之间取得平衡。与OMP方法相比,能够进一步减少选择变量的数量,防止过拟合,提高模型的预测能力和可解释性。 展开更多
关键词 近红外光谱 变量选择 正交匹配追踪 偏最小二乘 贝叶斯信息准则
在线阅读 下载PDF
Slope reliability and back analysis of failure with geotechnical parameters estimated using Bayesian inference 被引量:10
5
作者 Luis-Fernando Contreras Edwin T.Brown 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期628-643,共16页
A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on ... A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on the parameter values with typical data from laboratory tests and site investigations used in design.The posterior distributions are often complex,multidimensional functions whose analysis requires the use of Markov chain Monte Carlo(MCMC)methods.These procedures are used to draw representative samples of the parameters investigated,providing information on their best estimate values,variability and correlations.The paper describes the methodology to define the posterior distributions of the input parameters for slope design and the use of these results for evaluation of the reliability of a slope with the first order reliability method(FORM).The reliability analysis corresponds to a forward stability analysis of the slope where the factor of safety(FS)is calculated with a surrogate model from the more likely values of the input parameters.The Bayesian model is also used to update the estimation of the input parameters based on the back analysis of slope failure.In this case,the condition FS?1 is treated as a data point that is compared with the model prediction of FS.The analysis requires a sufficient number of observations of failure to outbalance the effect of the initial input parameters.The parameters are updated according to their uncertainty,which is determined by the amount of data supporting them.The methodology is illustrated with an example of a rock slope characterised with a Hoek-Brown rock mass strength.The example is used to highlight the advantages of using Bayesian methods for the slope reliability analysis and to show the effects of data support on the results of the updating process from back analysis of failure. 展开更多
关键词 bayesian ANALYSIS HOEK-BROWN criterion SLOPE reliability Back ANALYSIS of FAILURE
在线阅读 下载PDF
Bayesian data analysis to quantify the uncertainty of intact rock strength 被引量:8
6
作者 Luis Fernando Contreras Edwin T.Brown Marc Ruest 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期11-31,共21页
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insu... One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength. 展开更多
关键词 UNCERTAINTY Intact rock strength bayesian analysis Hoek-Brown criterion
在线阅读 下载PDF
Reliability-based design in rock engineering: Application of Bayesian regression methods to rock strength data 被引量:3
7
作者 Nezam Bozorgzadeh John P.Harrison 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期612-627,共16页
Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) str... Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified. 展开更多
关键词 Reliability-based design(RBD) Hoek-Brown(HeB)criterion bayesian regression Indirect TENSILE STRENGTH Characteristic STRENGTH criterion
在线阅读 下载PDF
Spatial Modeling and Mapping of Tuberculosis Using Bayesian Hierarchical Approaches 被引量:1
8
作者 Abdul-Karim Iddrisu Yaw Ampem Amoako 《Open Journal of Statistics》 2016年第3期482-513,共32页
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and poli... Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya. 展开更多
关键词 bayesian Hierarchical HETEROGENEITY Deviance Information criterion (DIC) Markov Chain Monte Carlo (MCMC) Host Classes Relative Risk
暂未订购
Investigating Spatio-Temporal Pattern of Relative Risk of Tuberculosis in Kenya Using Bayesian Hierarchical Approaches
9
作者 Abdul-Karim Iddrisu Abukari Alhassan Nafiu Amidu 《Journal of Tuberculosis Research》 2018年第2期175-197,共23页
Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes ... Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya. 展开更多
关键词 bayesian Hierarchical Deviance Information criterion Hot Classes HETEROGENEITY MARKOV Chain MONTE Carlo Relative Risk Spatial and SPATIO-TEMPORAL
暂未订购
基于多模型推断估计池塘混养条件下凡纳滨对虾的生长参数 被引量:1
10
作者 杨明 徐嘉波 +2 位作者 施永海 税春 谢永德 《中国渔业质量与标准》 2024年第4期45-53,共9页
对混养草鱼(Ctenopharyngodon idella)池塘中的凡纳滨对虾(Litopenaeus vannamei)进行了5个月的周期性采样,应用Brody、Gompertz、Logistic、Richards、von Bertalanffy和广义von Bertalanffy等6种备选生长模型对其生长过程进行了拟合研... 对混养草鱼(Ctenopharyngodon idella)池塘中的凡纳滨对虾(Litopenaeus vannamei)进行了5个月的周期性采样,应用Brody、Gompertz、Logistic、Richards、von Bertalanffy和广义von Bertalanffy等6种备选生长模型对其生长过程进行了拟合研究,利用最大似然法估算了以上6种模型的生长参数,并综合应用赤池信息准则(AIC)和贝叶斯信息准则(BIC)对模型拟合度进行检验。研究结果表明凡纳滨对虾体长-体质量回归关系为W=0.0106L^(3.066)(R^(2)=0.987),经t-检验b值显著大于3,凡纳滨对虾表现为正异速生长(b>3)。AIC和BIC检验结果表明,von Bertalanffy、广义von Bertalanffy和Brody生长模型因不受数据支持而被舍弃,Richards、Logistic和Gompertz模型均受到了数据的较强支持,但没有任何一个模型的Akaike权重(ω_(i))大于95%,可被单独用来描述凡纳滨对虾体长与日龄的生长关系。因此应用多模型推断对这3种模型的生长参数进行加权平均处理,据此求出混养条件下凡纳滨对虾的多模型平均体长渐进值为13.741 cm(渐进体质量为32.694 g),作为描述凡纳滨对虾生长参数的稳健估计值。 展开更多
关键词 凡纳滨对虾 多模型推断 赤池信息准则 贝叶斯信息准则
在线阅读 下载PDF
基于t检验和逐步网络搜索的有向基因调控网络推断算法 被引量:2
11
作者 陈都 李圆媛 陈彧 《计算机应用》 CSCD 北大核心 2024年第1期199-205,共7页
为了克服基于条件互信息的路径一致算法(PCA-CMI)无法识别调控方向的缺陷,并进一步提高网络推断准确率,提出了一种基于t检验和逐步网络搜索的有向网络推断算法(DNI-T-SRS)。首先,对不同实验条件下的表达数据进行t检验以辨别基因调控的... 为了克服基于条件互信息的路径一致算法(PCA-CMI)无法识别调控方向的缺陷,并进一步提高网络推断准确率,提出了一种基于t检验和逐步网络搜索的有向网络推断算法(DNI-T-SRS)。首先,对不同实验条件下的表达数据进行t检验以辨别基因调控的上下游关系,指导路径一致(Path Consensus)算法中条件基因的选取,根据CMI2(Conditional Mutual Inclusive Information)剔除网络中的冗余边,得到了基于t检验的有向调控关系推断算法CMI2NI-T(CMI2-based Network Inference guided by t-Test);然后,建立有向调控关系对应的米氏微分方程模型对数据进行拟合,根据贝叶斯信息准则进行逐步网络搜索以修正网络推断结果。利用CMI2NI-T推断DREAM6挑战中的两个测试网络,所得到的曲线下面积(AUC)分别为0.7679和0.9796,相较于PCA-CMI分别提高了16.23%和11.62%;通过进一步的数据拟合后DNI-T-SRS的推断准确率分别达到了86.67%和100.00%,相较于PCA-CMI分别提高了18.19%和10.52%。实验结果表明,所提DNI-T-SRS算法能够有效剔除间接调控关系并保留直接调控连接,得到精确的基因调控网络推断结果。 展开更多
关键词 基因调控网络 条件互信息 T检验 逐步网络搜索 米氏微分方程模型 贝叶斯信息准则
在线阅读 下载PDF
联合GNSS与GRACE/GRACE-FO数据反演中国西南地区陆地水储量变化 被引量:1
12
作者 杨兴海 袁林果 +1 位作者 姜中山 汤苗 《测绘学报》 EI CSCD 北大核心 2024年第5期813-822,共10页
GNSS和重力恢复与气候试验(GRACE)及其后续任务(GRACE-FO)给陆地水储量变化(TWSC)研究带来了技术革新,但这两种技术估计的区域TWSC具有不同的时空尺度和精度特性。因此,有必要融合两种观测数据,以获得同一尺度且高精度的TWSC。本文基于G... GNSS和重力恢复与气候试验(GRACE)及其后续任务(GRACE-FO)给陆地水储量变化(TWSC)研究带来了技术革新,但这两种技术估计的区域TWSC具有不同的时空尺度和精度特性。因此,有必要融合两种观测数据,以获得同一尺度且高精度的TWSC。本文基于GNSS独立反演模型,使用求和算子对喷气推进实验室(JPL)的GRACE/GRACE-FO Mascon数据进行求和运算来构建约束,通过赤池贝叶斯准则选择最优模型参数,构建了一种联合GNSS与GRACE/GRACE-FO数据的区域TWSC反演模型。随后,本文设计数值模拟试验,以验证利用该模型反演中国西南地区TWSC的可行性。结果显示,1000次试验中联合反演估算的均方根误差均值为10 mm,比GNSS独立反演结果低47%。基于此方法,本文联合GNSS与JPL Mascon数据反演了中国西南地区2011年1月—2022年6月的时变TWSC。对比联合反演、GNSS独立反演、GRACE/GRACE-FO和高分辨率全球陆地数据同化系统(GLDAS)的结果,发现联合反演与GLDAS的TWSC周年振幅空间分布特征最吻合,表明联合反演估计的TWSC空间分辨率优于GNSS独立反演和GRACE的结果。最后,结合水平衡方程估算的区域水文收支情况,并通过广义三角帽方法评估陆地水储量等效水柱高的变化率(d(EWH)/d t)的不确定性。结果显示,联合反演估计的d(EWH)/d t不确定性为8 mm/月,较GRACE/GRACE-FO、GNSS独立反演和水平衡方程结果分别低33%、68%和62%。研究结果表明,与GNSS和GRACE/GRACE-FO独立反演方法相比,联合反演能够改善TWSC估值的精度,可为水资源管理决策及水文气候学研究提供更可靠的数据支撑。 展开更多
关键词 GNSS GRACE/GRACE-FO 联合反演 陆地水储量变化 赤池贝叶斯准则
在线阅读 下载PDF
基于高斯混合模型的谐波责任估计方法 被引量:1
13
作者 曹兴华 咸日常 +2 位作者 杨浩瀚 宋书麟 陈小娣 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第5期83-90,共8页
针对不完全可观系统提出一种基于高斯混合模型的谐波责任估计方法。依据谐波测量电压的概率分布特性估计各谐波负荷的谐波责任,规避因引入不可测的线路参数对量化谐波责任造成的困难。先根据测得的谐波电压样本训练高斯混合模型;然后,... 针对不完全可观系统提出一种基于高斯混合模型的谐波责任估计方法。依据谐波测量电压的概率分布特性估计各谐波负荷的谐波责任,规避因引入不可测的线路参数对量化谐波责任造成的困难。先根据测得的谐波电压样本训练高斯混合模型;然后,基于贝叶斯信息准则和Kullback‐Leibler散度比率确定混合模型中的高斯分量的数量及位置范围,并通过Z检验实现谐波电压样本的异常检测;最后,通过IEEE 14节点测试系统检验了所提方法的有效性。 展开更多
关键词 谐波责任估计 高斯混合模型 贝叶斯信息准则 Kullback‐Leibler散度 异常谐波检测
在线阅读 下载PDF
基于层次结构与多模块的海洋生物分类算法 被引量:1
14
作者 于升正 程远志 《计算机技术与发展》 2024年第11期36-42,共7页
传统分类方法在海洋生物图像分类任务上视各类别相互独立,而生物间存在着明确的相互关系,常规方法忽略了其生物学关系。为了使分类网络充分利用数据间的关系,该文提出层次化贝叶斯信息准则(HBIC)探索分层结构,并结合预定义层次结构联合... 传统分类方法在海洋生物图像分类任务上视各类别相互独立,而生物间存在着明确的相互关系,常规方法忽略了其生物学关系。为了使分类网络充分利用数据间的关系,该文提出层次化贝叶斯信息准则(HBIC)探索分层结构,并结合预定义层次结构联合学习,共同辅助神经网络分类。此外,为更高效准确地提取数据全尺寸特征,设计了一种EAConv模块,并引入相对注意力机制,基于多模块与层次结构,进一步建立端到端联合优化的分层学习方法框架(EAHNet)。所有实验基于私有的南麂列岛潮间带大型海洋生物数据集进行,根据层次结构设计的常规卷积神经网络能够将分类准确率提高到86.16%,完整网络能够使准确率达到96.17%,同时能够保证准确率与参数量等网络性能的均衡。结果表明,所提出的多种层次结构辅助、卷积与注意力机制特异性结合的特征提取方法,有效加强了网络对于海洋生物关系信息与特征的捕获能力,从而在整体上取得非常有竞争力的结果。 展开更多
关键词 层次结构 层次化贝叶斯信息准则 联合优化 多模块 海洋生物图像
在线阅读 下载PDF
基于欠定盲源分离的双路音频信号噪声自适应分离 被引量:4
15
作者 蓝壮青 《现代电子技术》 北大核心 2024年第24期68-72,共5页
当多个源信号同时存在于同一频段或时间域内时,它们可能会相互干扰,导致信号混叠。这种情况下使用双路音频传感器进行捕捉,无法准确地捕捉到所有源信号的信息,导致分离过程具有不确定性。对此,提出一种基于欠定盲源分离的双路音频信号... 当多个源信号同时存在于同一频段或时间域内时,它们可能会相互干扰,导致信号混叠。这种情况下使用双路音频传感器进行捕捉,无法准确地捕捉到所有源信号的信息,导致分离过程具有不确定性。对此,提出一种基于欠定盲源分离的双路音频信号噪声自适应分离方法。首先,构建欠定盲源分离模型,基于小波包变换分解和重构信号获取信号分量,并依据信号和分量之间的互相关系数筛选分解后的分量,删除其中的冗余分量后生成新的观测信号;然后,依据贝叶斯信息准则的奇异值分解方法估计该源信号的数量,将其转换为正定白化信号;最后,利用快速独立成分分析法将该信号分类,实现双路音频信号噪声自适应分离。测试结果显示:所提方法能够在保证信号质量的前提下完成信号变换处理,信干比均在15 dB以上;筛选后保留的各个分量相关系数均在0.65以上,有效地完成了对信号噪声的分离。 展开更多
关键词 欠定盲源分离 双路音频 信号噪声 自适应分离 小波包变换分解 贝叶斯信息准则
在线阅读 下载PDF
Discovering the Best Choice for Spline’s Knots and Intervals Using Order of Polynomial Regression Model
16
作者 Farag Hamad Najiah Younus Mohamed Jaber 《Open Journal of Statistics》 2024年第6期743-756,共14页
In this work, we seek the relationship between the order of the polynomial model and the number of knots and intervals that we need to fit the splines regression model. Regression models (polynomial and spline regress... In this work, we seek the relationship between the order of the polynomial model and the number of knots and intervals that we need to fit the splines regression model. Regression models (polynomial and spline regression models) are presented and discussed in detail in order to discover the relation. Intrinsically, both models are dependent on the linear regression model. Spline is designed to draw curves to balance the goodness of fit and minimize the mean square error of the regression model. In the splines model, the curve at any point depends only on the observations at that point and some specified neighboring points. Using the boundaries of the intervals of the splines, we fit a smooth cubic interpolation function that goes through (n + 1) data points. On the other hand, polynomial regression is a useful technique when the pattern of the data indicates a nonlinear relationship between the dependent and independent variables. Moreover, higher-degree polynomials can capture more intricate patterns, but it can also lead to overfitting. A simulation study is implemented to illustrate the performance of splines and spline segments based on the degree of the polynomial model. For each model, we compute the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to compare the optimal polynomial order for fitting the data with the number of knots and intervals for the splines model. Both AIC and BIC can help to identify the model that best balances fit and complexity, aiming to prevent overfitting by penalizing the use of excessive parameters. We compare the results that we got from applying the polynomial regression model with the splines model results in terms of point estimates, the mean sum of squared errors, and the fitted regression line. We can say that order five of the polynomial model may be used to estimate splines with five segments. 展开更多
关键词 Nonlinear Regression Splines POLYNOMIAL Cross-Validation Akaike Information & bayesian Information criterion
在线阅读 下载PDF
AWGN信道中超窄带调制VMSK的最佳解调性能 被引量:9
17
作者 杨东凯 吴华森 张其善 《通信学报》 EI CSCD 北大核心 2008年第5期128-132,共5页
以甚小移键控(VMSK)为例,针对加性白高斯噪声(AWGN)信道中的解调性能进行研究,基于信号接收的分类器模型,从最基本的概率方法出发,利用最小错误率贝叶斯准则,得到最低误比特率的接收方式及其性能。并从相关检测一致性、最佳性能以及可... 以甚小移键控(VMSK)为例,针对加性白高斯噪声(AWGN)信道中的解调性能进行研究,基于信号接收的分类器模型,从最基本的概率方法出发,利用最小错误率贝叶斯准则,得到最低误比特率的接收方式及其性能。并从相关检测一致性、最佳性能以及可推广性的角度进行了详细阐述。分析结果表明,VMSK调制方式中表示1和0的信号波形中相同部分的能量并不能提高误码率性能。若要获得相同的误码性能,VMSK需要比BPSK更高的信噪比。此结论可以推广到其他UNB调制。 展开更多
关键词 无线通信 超窄带 贝叶斯准则 甚小移键控 最佳接收机
在线阅读 下载PDF
统计假设检验方法在全极化SAR变化检测中的应用 被引量:10
18
作者 郝洪美 张永红 +1 位作者 石海燕 黄金波 《遥感学报》 EI CSCD 北大核心 2012年第3期520-532,共13页
本文以全极化SAR数据为研究对象。由于全极化数据相干矩阵T3或协方差矩阵C3服从复wishart分布,所以首先在此分布的基础上利用统计假设检验方法构建似然比参数,用以表征地表地物的变化程度,然后利用基于广义高斯分布模型的EM迭代算法(GGM... 本文以全极化SAR数据为研究对象。由于全极化数据相干矩阵T3或协方差矩阵C3服从复wishart分布,所以首先在此分布的基础上利用统计假设检验方法构建似然比参数,用以表征地表地物的变化程度,然后利用基于广义高斯分布模型的EM迭代算法(GGM-EM)对变化信息进行初提取,最后充分考虑上下文信息,利用概率松弛迭代算法对初检测信息进行优化。该方法不仅全自动提取变化信息,而且经过非相干平均、初始分类、分类结果优化3次降斑去噪处理,因此检测精度较高。通过与传统对数比值法的比较,证明该方法的有效性。 展开更多
关键词 全极化SAR 变化检测 似然比 最小错误率贝叶斯准则 概率松弛迭代算法
原文传递
AIC与BIC在亲体-补充量模型选择中的应用及比较 被引量:12
19
作者 王艳君 刘群 任一平 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期397-403,共7页
由于渔业资源评估中补充量的剧烈变动、亲体量的测量误差以及时间序列的偏差常常使亲体 补充量(SR)关系模型的确定存在很大偏差问题。本文以7种SR(Stock Recruitment)模型的模拟数据作为观测数据,研究了AIC(AkaikeInfor mationCriterion... 由于渔业资源评估中补充量的剧烈变动、亲体量的测量误差以及时间序列的偏差常常使亲体 补充量(SR)关系模型的确定存在很大偏差问题。本文以7种SR(Stock Recruitment)模型的模拟数据作为观测数据,研究了AIC(AkaikeInfor mationCriterion)与BIC(BayesianInformationCriterion)在SR模型选择中的应用。作为例证,文中采用AIC和BIC对8组实际的SR数据进行了SR模型的选择,并对其结果进行了比较。参数的估计方法为最大似然法(Maximumlikelihoodmethod)。结果表明,AIC和BIC在SR模型选择中是有效的。但是,对于嵌套模型,BIC可能比AIC更有效。 展开更多
关键词 亲体-补充量模型 最大似然法 AIC(Akaike INFORMATION criterion) BIC(bayesian INFORMATION criterion)
在线阅读 下载PDF
基于贝叶斯信息准则的极化干涉SAR图像非监督分类 被引量:8
20
作者 杨文 颜卫 +1 位作者 涂尚坦 廖明生 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2628-2634,共7页
该文提出一种利用贝叶斯信息准则自动确定聚类类别数的极化干涉SAR非监督分类算法。该方法首先利用Shannon熵特征对极化干涉SAR图像进行初始分类,然后利用期望最大化(Expectation-Maximization,EM)算法和标号代价(LabelCost)优化算法对... 该文提出一种利用贝叶斯信息准则自动确定聚类类别数的极化干涉SAR非监督分类算法。该方法首先利用Shannon熵特征对极化干涉SAR图像进行初始分类,然后利用期望最大化(Expectation-Maximization,EM)算法和标号代价(LabelCost)优化算法对分类结果进行迭代优化,同时通过贝叶斯信息准则(Bayesian InformationCriterion,BIC)自动确定非监督分类的最佳类别数。实验结果表明该算法能够较准确地确定分类类别数,并具有较为满意的分类效果。 展开更多
关键词 合成孔径雷达 极化干涉 非监督分类 贝叶斯信息准则
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部